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Abstract

The advent of gravitational-wave (GW) astronomy has presented us with a completely new means for
observing the Universe, allowing us to probe its structure and evolution like never before. In this thesis,
we explore three distinct but complementary avenues for using GW observations to gain new insights
into cosmology and fundamental physics.

In chapter 1, we study the astrophysical GW background (AGWB): the cumulative GW signal arising
from a large number of compact binary coalescences (CBCs) throughout the Universe. Since these
compact binaries reside in galaxies, the AGWB contains anisotropies (i.e., intensity fluctuations on the sky)
that trace out the large-scale structure of the cosmic matter distribution. Despite their intrinsic interest as
a source of novel cosmological information, these anisotropies have been neglected in most studies of the
AGWB until quite recently. Applying tools and concepts from other cosmological observables such as
galaxy surveys and the cosmic microwave background (CMB), we investigate the angular power spectrum
of the AGWB, with the goal of developing predictions that can be confronted with current and future
directional AGWB searches. Our key result is a simulated full-sky map of the AGWB anisotropies that
we construct using data from the Millennium𝑁 -body simulation. We find that these anisotropies are
much larger in amplitude than in early-Universe observables such as the CMB, and that the lowest few
multipoles of the angular power spectrum are likely to be observed by third-generation GW observatories.
We also highlight the issue of shot noise due to the relatively low rate of CBCs in our frequency band of
interest, and develop an optimal data-analysis strategy for estimating the true angular power spectrum in
the presence of this shot noise.

In chapter 2, we investigate the nonlinear GW memory effect, a fascinating prediction of general
relativity in the dynamical, nonlinear regime, in which essentially all GW emission is accompanied by a
hereditary, monotonically-increasing GW strain sourced by the energy of the escaping gravitons. Essentially
all of the literature on this effect has focused on the memory signals associated with CBCs; we broaden this
scope by calculating, for the first time, the nonlinear memory emitted by cusps and kinks on cosmic string
loops, which are among the most promising cosmological sources of GWs. Working in the Nambu-Goto
approximation, we obtain simple analytical waveforms for the memory emitted by cusps and kinks, as well
as the ‘memory of the memory’ and other higher-order effects. Summing over all of these contributions, we
show that, surprisingly, the combined cusp memory signal diverges for sufficiently large loops, indicating
a breakdown in the validity of the weak-field description of the cusp. We trace this divergence back to the
high-frequency behaviour of the original cusp waveform, which gives rise to a trans-Planckian energy flux
in the direction of the cusp’s motion. We then present one tentative possible solution to this divergence,
in which the portion of the string surrounding the cusp collapses to form a primordial black hole (PBH).
We investigate the observational predictions of this scenario, and show that these PBHs could act as a
‘smoking gun’ signature of cosmic strings.

Finally, in chapter 3 we develop a powerful new method for GW detection based on precision meas-
urements of the orbits of binary systems. In the presence of a stochastic GW background (GWB) the
trajectories of the binary’s components are perturbed, giving rise to a random walk in the system’s orbital
parameters over time. By searching for this stochastic orbital evolution, we can infer the presence or
absence of a GWB, turning the binary into a dynamical GW detector. We develop here a novel Fokker-
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Planck formalism for calculating the expected evolution in all six orbital elements. We then apply this
formalism to two observational probes: timing of binary millisecond pulsars, and laser ranging of the
Moon and artificial satellites. We use a Fisher-forecasting approach to estimate the sensitivity of each of
these probes to the GWB, and show that present data are already sensitive enough to place the strongest
constraints to date in the μHz frequency band. This band lies between the frequencies probed by pulsar
timing arrays and by future space-based interferometers such as LISA, and is therefore an extremely
attractive observational target, which could contain numerous cosmological GW signals. As an example,
we consider the GWB sourced by a cosmological first-order phase transition (FOPT), and show that the
binary resonance searches we propose (in particular, with lunar laser ranging) will be sensitive to a region
of the FOPT parameter space that no other current or near-future GW experiment can reach.
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Notation

• We generally use ∼ to mean equality to within an order of magnitude, ≈ to mean approximate
equality, ≃ to mean asymptotic equality (e.g., e𝑥 ≃ 1 + 𝑥), and ∝ to mean proportionality. The
symbol ≡ denotes equality by definition.

• We use units such that the speed of light in vacuum and the Boltzmann constant are both equal
to unity, 𝑐 = 𝑘B = 1, but keep Newton’s constant𝐺 and the reduced Planck constant ℏ explicit
throughout. Unless otherwise specified, we set the Hubble constant to the Planck 2018 value of
𝐻0 ≈ 67.7 km s−1 Mpc−1 ≈ 2.19 × 10−18 Hz [55].

• Spacetime indices running over (0, 1, 2, 3) are indicated by lowercase Greek letters, while Latin
letters indicate either spatial indices running over (1, 2, 3) or, where specified, some other set of
positive integers (1, 2, . . . ). We also use 𝐴, 𝐴 ′ to denote GW polarisation indices running over
(+,×). Round brackets around pairs of indices indicate a symmetrisation operation, e.g.,

𝑋 (𝜇𝜈) ≡
1
2
(𝑋𝜇𝜈 + 𝑋𝜈𝜇).

• Our conventions for general relativity match those of Misner, Thorne, and Wheeler [429] and
Wald [574]. The spacetime metric 𝑔𝜇𝜈 , which is used to raise and lower indices, has signature
(− + + +), and defines the Christoffel symbols

𝛤
𝜇

𝛼𝛽
≡ 1

2
𝑔 𝜇𝜈 (∂𝛼𝑔𝛽𝜈 + ∂𝛽𝑔𝛼𝜈 − ∂𝜈 𝑔𝛼𝛽 ).

The Riemann curvature is given by

𝑅
𝜇

𝜈𝛼𝛽
≡ ∂𝛼𝛤

𝜇

𝜈𝛽
− ∂𝛽𝛤

𝜇
𝜈𝛼 + 𝛤

𝜇
𝜌𝛼𝛤

𝜌

𝜈𝛽
− 𝛤 𝜇

𝜌𝛽
𝛤
𝜌
𝜈𝛼 ,

which defines the Ricci curvature, 𝑅𝜇𝜈 ≡ 𝑅𝛼𝜇𝛼𝜈 , and Ricci scalar, 𝑅 ≡ 𝑅
𝜇
𝜇 . We do not use

commas and semicolons to denote partial and covariant derivatives.

• Spatial 3-vectors (and Euclidean vectors more generally) are written in boldface, 𝒙 , with the corres-
ponding letter used to denote their length, 𝑥 = |𝒙 |. Unit-length 3-vectors are written with a hat,
�̂� = 𝒙/𝑥 .

• Complex conjugates are denoted with an asterisk, 𝑧∗.

• Matrices are denoted by uppercase sans-serif Latin letters, M, with their transpose and Hermitian
conjugate written as MT and M†, respectively.

• We denote integrals over the real lineR = (−∞,+∞) and over 3D Euclidean spaceR3 by∫
R

d𝑥 ≡
∫ +∞

−∞
d𝑥 ,

∫
R3

d3𝒙 ≡
∫ +∞

−∞
d𝑥1

∫ +∞

−∞
d𝑥2

∫ +∞

−∞
d𝑥3 ,

ix



while integrals over the 2-sphere 𝑆2 are written as∫
𝑆2

d2𝒓 ≡
∫ +1

−1
d(cos 𝜃 )

∫ 2π

0
d𝜙 =

∫ π

0
d𝜃 sin 𝜃

∫ 2π

0
d𝜙 ,

where (𝜃 , 𝜙) are the usual polar coordinates.

• We define the Fourier transform of a functionℎ (𝑡 ) by

ℎ̃ ( 𝑓 ) = F [ℎ] ( 𝑓 ) ≡
∫
R

d𝑡 e−2πi𝑓 𝑡ℎ (𝑡 ), ℎ (𝑡 ) =
∫
R

d𝑓 e2πi𝑓 𝑡 ℎ̃ ( 𝑓 ).
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0 Introduction:
the dawn of gravitational-wave
astronomy

‘When I ask myself “What are the great things we got
from the Renaissance?”, it’s the great art, the great music,
the science insights of Leonardo da Vinci. Two hundred
years from now when you ask “What are the great things
that came from this era?”, I think it’s going to be an
understanding of the Universe around us.’

Kip Thorne

The era of gravitational-wave (GW) astronomy has begun. On 14 September 2015, almost a century
after Einstein published his General Theory of Relativity (GR) [250, 251], one of the most important
and controversial predictions of his theory was verified in spectacular fashion by the Advanced LIGO
interferometers [2, 302] with the detection of GWs from two merging black holes (BHs) [5]. This
event—dubbed GW150914—helped dispel decades of scepticism around the physical existence of GWs
due to theoretical misconceptions (including by Einstein himself) [186, 368] and spurious observational
claims (most notably by Weber and his collaborators) [208, 583], and was immediately heralded as a
major breakthrough by the scientific community. In the six years since this first detection, LIGO and
its European counterpart Virgo [44] have discovered dozens more GW signals [22, 33, 40, 41], firmly
establishing GW astronomy as a new observational science for the 21st century.

While testing the predictions of GR is a laudable goal in itself, it is far from the only motivation for
GW science. Much of the appeal of GWs lies in their rôle as an astronomical messenger, akin to the
photon or the neutrino: a new and fundamentally different tool with which to observe the Universe. The
power of combining this new messenger with more traditional astronomical observations has already
been forcefully demonstrated by the neutron star (NS) merger event GW170817 [12–14], whose GW
signal, combined with observations across the electromagnetic (EM) spectrum, has eliminated a large class
of modified gravity theories [93, 219, 261, 495], probed the properties of nuclear matter under extreme
conditions [20, 413, 466], confirmed NS mergers as key sites of 𝑟 -process nucleosynthesis [198, 244], and
provided a novel and independent measurement of the local expansion rate of the Universe [15, 502].

Even more exciting, in my view, is the opportunity to probe objects and phenomena that only GWs
can access: ‘dark’ parts of the Universe that are invisible to EM astronomy. This is important because
we know that luminous matter only constitutes a small fraction of the cosmic matter inventory, with
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0 Introduction: the dawn of gravitational-wave astronomy

the majority consisting of non-baryonic ‘dark matter’ (DM) whose nature is still mysterious [121]. Black
holes (which may or may not account for most or all of the DM, see section 0.3.4) are a quintessential
example of a dark astronomical object, made not of hot radiating gas like the Sun and other stars, but
formed instead from pure spacetime geometry. Until September 2015, all observational evidence for
BHs was indirect, mostly due to their gravitational influence on surrounding luminous matter (e.g., in
quasars [516] or X-ray binaries [473]). With the advent of GW astronomy, we can now observe BHs
directly, and LIGO/Virgo are already giving us fascinating new insights into their properties and origins
as a result [23, 31, 35, 77, 110, 427, 485, 547].

Going back further, beyond the myriad dark objects in our cosmic neighbourhood, we reach an entire
epoch in the Universe’s history that is inaccessible to EM observations. For the first 370,000 years or so after
the Big Bang, the Universe was so hot that the electrons were unbound from their atomic nuclei, forming
a dense ionised plasma that was impenetrable to EM radiation [584]. The light emitted at the end of this
epoch, which we observe today as the Cosmic Microwave Background (CMB) [238, 453], represents the
earliest point in the Universe’s history that can be probed with EM observations. Since the CMB has been
mapped out in exquisite detail by the Planck satellite [54] and other missions [48, 112, 116, 297, 521],
we have already, in a sense, hit the limit of EM astronomy’s reach into the early Universe. GWs, on the
other hand, face no such restriction; since they couple so weakly to matter, they pass through the hot
pre-recombination plasma unimpeded, carrying signals from the Universe’s earliest moments. Thus, while
EM observations can tell us about conditions in the Universe at energies below ∼ 0.3 eV (i.e. ∼ 3000 K,
the temperature at which photons decoupled from baryons), GWs can reach far further, far beyond the
∼ 1013 eV energies probed by terrestrial experiments such as the Large Hadron Collider (LHC) [260], all
the way up to the Planck scale𝑚Pl ∼ 1028 eV and into the realm of quantum gravity.

This ability to probe the hidden side of the Universe, from BHs to the Big Bang, makes GWs the
theoretical physicist’s most powerful new tool, opening up countless new avenues for studying the nature
of the cosmos and the fundamental laws that govern it. The goal of this thesis is to explore a few of these
avenues. In chapter 1, we look at ways in which GW observations can be used to probe the large-scale
structure (LSS) of the Universe by studying anisotropies in the cosmic GW background, analogous to those
in the CMB. In chapter 2, we study novel GW signatures and phenomenology of cosmic strings, which
are one of the most the promising ways in which GWs can probe the pre-recombination era. Finally, in
chapter 3, we explore the possibility of using binary systems as dynamical detectors of GWs, and investigate
the constraints that such detectors can place on cosmological first-order phase transitions.

In the remainder of this chapter, we set the stage by giving a self-contained introduction to GW
astronomy. We begin in section 0.1 with a discussion of GWs themselves, in which we derive their basic
physical properties in the framework of linearised GR. Then, in section 0.2, we introduce a GW signal
which is of particular importance from the point of view of cosmology: the stochastic GW background
(GWB). In section 0.3 we give an overview of some of the various GW sources which contribute to the
GWB, focusing on those which are the most promising as probes of cosmology and fundamental physics.
Finally, in section 0.4 we describe the basic principles and current status of observational searches for
GWs.
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0.1 What are gravitational waves?
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Figure 0.1: In Einsteinian gravity, disturbances in the Sun’s gravitational field (shown in red) travel along the
lightcone (grey), reaching the Earth’s worldline (blue) some finite time after they originated. We call these
propagating disturbances gravitational waves.

0.1 What are gravitational waves?

The existence of GWs arises very naturally from the basic premise of GR, which is to formulate a relativistic
theory of the gravitational field; i.e., one in which all observers agree on the speed of light in vacuum,
𝑐 ≈ 3 × 108 m s−1. This requirement imposes a particular kind of causal structure on the theory, in
which no physical degree of freedom can propagate faster than light, and the consequences of any event
can therefore only be felt within its ‘lightcone’: the region of spacetime that can be reached by particles
travelling at speeds ≤ 𝑐 (see figure 0.1). Classical electrodynamics is a key example of such a theory.

This causal structure is in marked contrast with that of Newtonian gravity, in which changes in the
gravitational field are felt simultaneously everywhere, no matter how far from the source. If, for example,
the Sun were to spontaneously disappear, then according to Newton the Earth would immediately
deviate from its orbit. Meanwhile, the last photons emitted by the Sun, obeying the relativistic laws of
electrodynamics, would travel along the lightcone, and it would take ∼ 8.3 minutes for the Sun to cease
shining in the sky (as measured by an observer comoving with the Earth). This instantaneous Newtonian
propagation is nonsensical from the perspective of a relativistic theory, as different observers cannot
agree on what is meant by ‘simultaneous’—some would even see the Earth’s orbit change before the Sun
disappeared, making the causal relationship between the two events ambiguous. However, all observers
would agree that the sunlight ceased to reach the Earth after the Sun disappeared, as the speed-of-light
propagation of this signal has a special status in a relativistic theory.

Clearly this situation would make much more sense if changes to the gravitational field also propagated
at the speed of light. As we discuss below, this is indeed the situation in GR.1 This simple example
illustrates the most general and straightforward way to understand what GWs are: they are degrees of

1In fact, this idea was discussed decades before Einstein’s formulation of GR, most notably by Heaviside [309] and Poincaré [458].
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0 Introduction: the dawn of gravitational-wave astronomy

freedom of the gravitational field which propagate at the speed of light, thereby endowing gravitational
interactions with a relativistic causal structure akin to that of electrodynamics.2

In the remainder of this section, we explore the physical properties of these light-like excitations of the
gravitational field. After a very brief recap of GR, we introduce the linearised form of the theory and use
this to show that there are in fact two degrees of freedom, before discussing how these interact with test
masses, how they are sourced by the motion of matter, and how we can assign energy and momentum
to them. We end with a discussion of the GW memory effect, a fascinating prediction of GR which is
further explored in chapter 2 of this thesis. Throughout we use units in which 𝑐 = 1.

0.1 .1 A lightning review of general relativity

We have referred several times above to ‘the gravitational field’. In GR, this means the spacetime metric
𝑔𝜇𝜈 (𝑥): a symmetric rank-(0, 2) tensor field, whose components in any coordinate chart {𝑥𝜇} determine
the spacetime interval d𝑠 between two infinitesimally separated events,

d𝑠2 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 . (0.1)

The resulting spacetime geometry is generically curved, and this curvature influences the trajectories
of particles through spacetime. In the absence of non-gravitational interactions, these trajectories are
solutions of the geodesic equation

d𝑈 𝜇

d𝜆
+ 𝛤 𝜇

𝛼𝛽
𝑈 𝛼𝑈 𝛽 = 0, (0.2)

where𝑈 𝜇 (𝜆) is the 4-velocity of the particle along a trajectory with affine parameter 𝜆, and 𝛤 𝜇
𝛼𝛽

are the
Christoffel symbols associated with the metric 𝑔𝜇𝜈 . The metric, in turn, evolves dynamically according to
the Einstein field equation (EFE),3

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 = 8π𝐺𝑇𝜇𝜈 , (0.3)

where𝑅𝜇𝜈 is the Ricci tensor corresponding to 𝑔𝜇𝜈 and𝑅 is the Ricci scalar, while the energy-momentum
tensor𝑇𝜇𝜈 describes how matter (i.e., all other fields that exist in spacetime) acts as a source of spacetime
curvature. This beautiful reciprocal interplay between the geometry of spacetime and the matter fields
that inhabit it is succinctly captured by Wheeler [588]: ‘Spacetime tells matter how to move; matter tells
spacetime how to curve.’

The EFE can also be derived from an action principle, writing

𝑆 = 𝑆EH + 𝑆mat, 𝑆EH ≡ 1
16π𝐺

∫
d4𝑥

√−𝑔𝑅, 𝑇 𝜇𝜈 ≡ 2
√−𝑔

δ𝑆mat

δ𝑔𝜇𝜈
, (0.4)

2Note however that GWs do not have to propagate at the speed of light in a generic relativistic theory [175, 480]; this is merely a
particularly appealing and well-motivated option. In practice, joint GW and EM observations of GW170817 have demonstrated
that any differences between the speed of light and the speed of GWs must be incredibly small: less than one part in 1015 [93,
219, 261, 495].

3This is sometimes written with an additional cosmological constant term,𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = 8π𝐺𝑇𝜇𝜈 . Here we choose

instead to absorb𝛬 into𝑇𝜇𝜈 , treating it as a homogeneous matter field with negative pressure,𝑝 = −𝜌 .
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where 𝑔 ≡ det 𝑔𝜇𝜈 is the metric determinant, 𝑆EH is the Einstein-Hilbert action, and 𝑆mat is the action of
the matter fields. The metric which extremises the total action 𝑆 then obeys equation (0.3).

One of the most important features of the EFE (0.3) is that it holds in any coordinate chart; we are free
to arbitrarily redefine our coordinates𝑥 → 𝑥 ′(𝑥) (subject to differentiability conditions) by appropriately
redefining the metric,

𝑔𝜇𝜈 (𝑥) → 𝑔 ′
𝜇𝜈 (𝑥 ′) =

∂𝑥𝛼

∂𝑥 ′𝜇
∂𝑥𝛽

∂𝑥 ′𝜈
𝑔𝛼𝛽 (𝑥), (0.5)

and similarly redefining the energy-momentum tensor. Such a transformation is called a diffeomorphism,
and the indifference of GR to diffeomorphisms is called the principle of general covariance. This principle
reflects the notion that spacetime coordinates are merely artificial constructs that we introduce to facilitate
calculations, and should play no fundamental rôle in the laws of physics. The resulting freedom to choose
coordinates in GR can thus be thought of as a gauge freedom, analogous to the choice of potential in
electrodynamics. Practically, this huge redundancy in description means that we must be careful to
separate the physical degrees of freedom from gauge degrees of freedom; historically it was this difficulty
that caused much of the early confusion over the existence of GWs in GR [186].

0.1 .2 Linearised general relativity

The EFE (0.3), while famous for its elegance and conceptual simplicity, is also infamously difficult to
solve. While many exact solutions do exist [526], only a handful represent physically relevant spacetimes,
and those that do often assume a high degree of symmetry that is all but guaranteed to be broken in reality.
Chief among these are the flat Minkowski spacetime, the Friedmann-Lemaître-Roberson-Walker (FLRW)
solutions used in cosmology, and the Kerr-Newman family of BH spacetimes.

Despite the relative simplicity of these solutions, there are many physical situations where differences
between the true spacetime metric 𝑔𝜇𝜈 and that of some exact solution 𝑔 (0)

𝜇𝜈 are ‘small’ in some sense. We
can then make progress by using perturbation theory, defining the small quantityℎ𝜇𝜈 ≡ 𝑔𝜇𝜈 − 𝑔 (0)

𝜇𝜈 , and
writing the relevant equations as series expansions inℎ. While these methods are necessarily approximate,
due to the need to truncate the expansion at some order in ℎ, they are often incredibly powerful: for
example, cosmological perturbation theory (where 𝑔 (0)

𝜇𝜈 belongs to the FLRW family) provides an excellent
description of the anisotropies in the CMB [584] as well as many other cosmological observables at lower
redshift [115], while BH perturbation theory (where 𝑔 (0)

𝜇𝜈 belongs to the Kerr-Newman family) allows us
to compute the quasinormal ‘ringing’ of BHs formed in mergers [119, 377] and the orbits of small bodies
around supermassive BHs through the ‘self-force’ formalism [96].

The case where 𝑔 (0)
𝜇𝜈 is the Minkowski metric𝜂𝜇𝜈 = diag(−1,+1,+1,+1) is by far the simplest, describ-

ing a situation where there are no strongly-gravitating objects (such as black holes and neutron stars) and
where cosmological expansion is negligible. Despite its simplicity, however, this flat-space perturbation
theory is sufficient to capture many of the most salient features of GWs. In fact, for much of the discussion
we can simplify things even further by considering only the first-order (linear) term in the series expansion.
The resulting theory is called linearised GR.4

4It is important to note that linearised GR is not the only tool for studying GWs, and that it is not necessary to assume that
GWs are perturbatively small. For example, one can use the Bondi-Sachs formalism [147, 240, 492] to study the large-distance
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Inserting the perturbed flat-space metric

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , |ℎ𝜇𝜈 | ≪ 1, (0.6)

into the EFE (0.3) and keeping only the linear-order terms, we obtain [406]

□ℎ̄𝜇𝜈 +𝜂𝜇𝜈∂𝛼∂𝛽ℎ̄𝛼𝛽 − 2∂(𝜇∂𝛼ℎ̄𝜈)𝛼 = −16π𝐺𝑇𝜇𝜈 , (0.7)

which we have written in terms of the trace-reversed GW perturbation,

ℎ̄𝜇𝜈 ≡ ℎ𝜇𝜈 −
1
2
ℎ𝛼𝛼𝜂𝜇𝜈 . (0.8)

The resulting equation (0.7) is a hyperbolic partial differential equation (PDE), i.e., one which has wavelike
solutions which propagate at a characteristic finite velocity; in this case, the speed of light, as suggested by
the presence of the (flat-space) d’Alembertian operator□ ≡ ∂𝜇∂𝜇 = −∂2

0 + ∂𝑖∂𝑖 , and the absence of any
mass term ∼ 𝑚2ℎ̄𝜇𝜈 . The other derivative terms in equation (0.7) do not spoil this behaviour, and in fact
we see below that we can safely set them to zero with an appropriate gauge choice.

0.1 .3 Fixing the gauge

Since ℎ̄𝜇𝜈 has two symmetric spacetime indices, the linearised EFE (0.7) has, in principle, ten independent
degrees of freedom. However, due to general covariance, we must be extremely cautious in identifying
which of these degrees of freedom are physical (if any), and which can be removed by an appropriate gauge
choice.

Writing a general diffeomorphism as 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇, and using equation (0.5), we find that the metric
perturbation transforms as

ℎ𝜇𝜈 → ℎ𝜇𝜈 − 2∂(𝜇𝜉𝜈) . (0.9)

We thus see that specifying an almost-flat metric (0.6) has already ruled out a large class of diffeomorphisms,
as the only remaining gauge transformations consistent with this ansatz are those in which |∂𝜉 | ≪ 1.
Nonetheless, the ∂𝜉 terms are still permitted to be of the same size as ℎ, so they must still be carefully
separated from the physical degrees of freedom.

We saw above that the interpretation of the linearised EFE (0.7) as a wave equation was obscured
somewhat by the presence of terms like ∂𝜇ℎ̄𝜇𝜈 , and mentioned that these can be removed by a gauge
transformation. Indeed, from equations (0.8) and (0.9) we find that ∂𝜇ℎ̄𝜇𝜈 → ∂𝜇ℎ̄𝜇𝜈 −□𝜉𝜈 , which
shows that it is always possible to set

∂𝜇ℎ̄𝜇𝜈 = 0 (0.10)

behaviour of GWs of arbitrary amplitude emitted by an isolated source, and there are also numerous exact solutions describing
arbitrarily strong gravitational plane waves [240, 526].
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with an appropriate choice of 𝜉 , as the latter can always be constructed using the Green’s function for the
d’Alembertian. This is the harmonic gauge condition,5 in which the EFE becomes

□ℎ̄𝜇𝜈 = −16π𝐺𝑇𝜇𝜈 , (0.11)

making its interpretation as a massless relativistic wave equation much clearer.

Setting ∂𝜇ℎ̄𝜇𝜈 = 0 removes four gauge degrees of freedom from the ten that we started with: one
for each value of the free spacetime index𝜈 . This does not fully specify 𝜉 however, as it is still possible
to perform a smaller set of gauge transformations that obey□𝜉𝜇 = 0; i.e., we are free to choose four
harmonic functions. If we are in a region of spacetime with no matter sources,𝑇𝜇𝜈 = 0, then this allows
us to set certain components of ℎ̄𝜇𝜈 to zero.6 A particularly appealing choice is to set

ℎ̄0𝑖 = 0, (0.12)

which is called the transverse condition. To see why, consider a plane-wave solution to the vacuum EFE,
□ℎ̄𝜇𝜈 = 0, given by

ℎ̄𝜇𝜈 (𝑡 , 𝒙 ) = e2πi𝑓 (𝑡−𝒓 ·𝒙 )�̄�𝜇𝜈 , (0.13)

where 𝑓 is the frequency of the wave, 𝒓 is a unit vector pointing in the propagation direction, and the
components of �̄�𝜇𝜈 are constants describing the magnitude of the trace-reversed metric perturbation.
Applying the transverse condition (0.12) in the harmonic gauge (0.10) gives us

∂𝜇ℎ̄𝜇𝑖 = ∂𝑗 ℎ̄ 𝑗 𝑖 = 0 =⇒ 𝑟 𝑗 �̄�𝑗 𝑖 = 0, (0.14)

such that the projection of the plane wave onto the propagation direction is zero; i.e., there is no perturba-
tion along the longitudinal direction, only in the transverse directions.

The transverse condition (0.12) uses up three of our four free harmonic functions (one for each of the
three values of the spatial index 𝑖 ). We can use the final one to additionally enforce the traceless condition,

ℎ̄
𝜇
𝜇 = 0, (0.15)

which erases the distinction between the metric perturbation and its trace-reversed form,ℎ𝜇𝜈 = ℎ̄𝜇𝜈 .7

Since the coordinate volume element in our perturbed flat spacetime is proportional to√−𝑔 =

√︃
1 + ℎ𝜇𝜇 ,

5This name comes from the fact that the spacetime coordinates are then solutions of the curved-space wave equation,∇𝜇∇𝜇𝑥𝜈 = 0.
Other names include the de Donder gauge, the Hilbert gauge, and in the context of linearised GR specifically, the Lorenz or
(erroneously) Lorentz gauge [334], by analogy with electrodynamics.

6We cannot set components of ℎ̄𝜇𝜈 to zero inside a matter source by subtracting only harmonic functions obeying□𝜉𝜇 = 0,
because the flat-space d’Alembertian commutes with partial derivatives to give□ℎ̄𝜇𝜈 → □(ℎ̄𝜇𝜈 − 2∂(𝜇𝜉𝜈) +𝜂𝜇𝜈∂𝛼𝜉𝛼 ) =
□ℎ̄𝜇𝜈 ≠ 0.

7Note that while we have setℎ0𝑖 = 0, we have keptℎ00 thus far. This component must be constant since ∂0ℎ00 = ∂𝜇ℎ𝜇0 = 0
by the harmonic condition, such that the vacuum EFE reduces to the Laplace equation, ∂𝑖∂𝑖ℎ00 = 0, and thus does not exhibit
wavelike behaviour. In fact, in the appropriate weak-field, slow-motion limit of GR, this component is related to the Newtonian
gravitational potential, 𝜙 (𝒙 ) = − 1

2ℎ00 [429]. We can thus neglect it if we are sufficiently far from any massive objects, leaving
just the spatial componentsℎ𝑖 𝑗 as the nonzero parts of the metric perturbation. The traceless condition is then justℎ𝑖

𝑖
= 0.
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equation (0.15) can be interpreted as choosing the gauge such that the coordinate volume of a spacetime
region is not affected by a passing GW.

Combining the three conditions in equations (0.10), (0.12), and (0.15), we have exhausted our possib-
ilities for specifying 𝜉 , and have thus removed all gauge freedom from the vacuum linearised EFE. We call
this the transverse-traceless (TT) gauge.8 Of our initial ten degrees of freedom, we have removed four by
choosing the harmonic gauge, and a further four with the transverse and traceless conditions, leaving two
physical degrees of freedom. We explore these two GW modes below.

0.1 .4 The two polarisation modes

Let us now return to the plane wave (0.13) and apply the TT gauge. Without loss of generality, we can
choose our spatial coordinates (𝑥, 𝑦 , 𝑧) such that the GW is propagating in the 𝒛 direction. The transverse
condition then becomesℎ𝑧𝑖 = 0, leaving just four nonzero components: two on-diagonal (ℎ𝑥𝑥 andℎ𝑦𝑦 )
and two off-diagonal (ℎ𝑥𝑦 and ℎ𝑦𝑥 ). The former must be the same up to a minus sign to ensure that
the trace vanishes, and the latter must be equal to each other to ensureℎ𝑖 𝑗 is symmetric, so we see that
only two components can be freely chosen; these are the two radiative degrees of freedom of the vacuum
gravitational field in GR, which we call the plus and cross polarisations,ℎ+ andℎ×, for reasons that will
become apparent in section 0.1.5.

We can thus write the 𝒛 -pointing plane wave as

ℎ𝑖 𝑗 (𝑡 , 𝑧) = e2πi𝑓 (𝑡−𝑧)
©«
ℎ+ ℎ× 0
ℎ× −ℎ+ 0
0 0 0

ª®®®¬ =
∑︁
𝐴=+,×

e2πi𝑓 (𝑡−𝑧)𝑒𝐴𝑖 𝑗ℎ𝐴 , (0.16)

where in the second equality we have defined the TT polarisation tensors,

𝑒+𝑖 𝑗 = 𝑥𝑖𝑥𝑗 − 𝑦𝑖𝑦𝑗 , 𝑒×𝑖 𝑗 = 2𝑥 (𝑖𝑦𝑗 ) , (0.17)

which encapsulate the geometric pattern of each of the two polarisations. We can also generalise to an
arbitrary propagation direction 𝒓 , which we specify using the standard spherical polar angles 𝜃 ∈ [0,π]
and 𝜙 ∈ [0, 2π); we then have

ℎ𝑖 𝑗 (𝑡 , 𝒙 ) =
∑︁
𝐴=+,×

e2πi𝑓 (𝑡−𝒓 ·𝒙 )𝑒𝐴𝑖 𝑗 (𝒓 )ℎ𝐴 , (0.18)

with the polarisation tensors given by

𝑒+𝑖 𝑗 (𝒓 ) = 𝜃𝑖 𝜃 𝑗 − �̂�𝑖 �̂� 𝑗 , 𝑒×𝑖 𝑗 (𝒓 ) = 2𝜃 (𝑖 �̂� 𝑗 ) , (0.19)

8In constructing the TT gauge, we have chosen our coordinates such that the metric perturbation is transverse and traceless.
However, it is useful to note that this is not strictly necessary in practice. Given a generic coordinate system in linearised GR, it
is always possible to extract the TT part of the metric perturbation with an appropriate projection operation. So long as the
coordinate system is in the harmonic gauge (so that equation (0.11) holds), one can show that this TT part is equal to the value
of the metric perturbation in the TT gauge, allowing us to identify this part as representing GWs even when we are not in the
TT gauge.
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where the propagation direction 𝒓 and two transverse directions 𝜽 and �̂� are given by

𝒓 = sin 𝜃 cos𝜙 �̂� + sin 𝜃 sin𝜙 �̂� + cos 𝜃 𝒛 ,

𝜽 = cos 𝜃 cos𝜙 �̂� + cos 𝜃 sin𝜙 �̂� − sin 𝜃 𝒛 ,

�̂� = − sin𝜙 �̂� + cos𝜙 �̂� .

(0.20)

Note that these are normalised such that

𝑒𝐴𝑖 𝑗 (𝒓 )𝑒
𝐴′,𝑖 𝑗 (𝒓 ) = 2𝛿𝐴𝐴′, (0.21)

where 𝐴, 𝐴 ′ are polarisation indices running over +,×, and such that

𝑎𝑖 𝑗 =
1
2
𝑒𝐴𝑖 𝑗𝑒

𝐴,𝑘𝑙𝑎𝑘𝑙 (0.22)

for any symmetric TT rank-(0, 2) tensor 𝑎𝜇𝜈 , with implicit summation over the polarisation index. We
are free to redefine the two polarisation modes by rotating 𝜽 and �̂� around the 𝒓 -axis by an arbitrary
angle𝜓 ; this gives (

𝑒+
𝑖 𝑗

𝑒×
𝑖 𝑗

)
→

(
cos 2𝜓 − sin 2𝜓
sin 2𝜓 cos 2𝜓

) (
𝑒+
𝑖 𝑗

𝑒×
𝑖 𝑗

)
=

(
cos 2𝜓𝑒+

𝑖 𝑗
− sin 2𝜓𝑒×

𝑖 𝑗

sin 2𝜓𝑒+
𝑖 𝑗
+ cos 2𝜓𝑒×

𝑖 𝑗

)
, (0.23)

mixing the amplitudes of the two polarisations. We refer to𝜓 as the ‘polarisation angle’.

For a generic plane wave propagating in the 𝒓 -direction, it is often convenient to define

ℎ (𝑡 , 𝒙 ) ≡ 1
2
[
𝑒+,𝑖 𝑗 (𝒓 ) − i𝑒×,𝑖 𝑗 (𝒓 )

]
ℎ𝑖 𝑗 (𝑡 , 𝒙 ) = ℎ+(𝑡 , 𝒙 ) − iℎ×(𝑡 , 𝒙 ), (0.24)

thereby encoding the two real TT degrees of freedom as a single complex variable, whose amplitude is

|ℎ |2 = ℎℎ∗ = ℎ2
+ + ℎ2

× =
1
2
ℎ𝑖 𝑗ℎ𝑖 𝑗 . (0.25)

Under rotations of the polarisation angle, this complex strain transforms like

ℎ → e−2i𝜓ℎ, (0.26)

which is the transformation law for a massless spin-2 particle.

Since we are working in linearised GR, any interactions between different plane waves (which corres-
pond to terms of order ∼ ℎ2) are neglected. This allows us to trivially superpose as many plane-wave
solutions as we like, each with arbitrary frequency, propagation direction, and plus- and cross-mode
amplitudes (so long as the latter are both much smaller than unity). In fact, the set of all plane waves
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serves as a basis in the space of solutions to the linearised vacuum EFE. We can thus write an arbitrary
vacuum GW solution as a superposition of plane waves,

ℎ𝑖 𝑗 (𝑡 , 𝒙 ) =
∫
R

d𝑓
∫
𝑆2

d2𝒓 e2πi𝑓 (𝑡−𝒓 ·𝒙 )𝑒𝐴𝑖 𝑗 (𝒓 )ℎ̃𝐴 ( 𝑓 , 𝒓 ), (0.27)

with the contribution from each polarisation, frequency, and propagation direction described by the
Fourier components ℎ̃𝐴 ( 𝑓 , 𝒓 ), and with implicit summation over the polarisation index. We can also
invert this to write

ℎ̃𝐴 ( 𝑓 , 𝒓 ) =
1
2
𝑓 2

∫
R3

d3𝒙 e−2πi𝑓 (𝑡−𝒓 ·𝒙 )𝑒𝐴,𝑖 𝑗 (𝒓 )ℎ𝑖 𝑗 (𝑡 , 𝒙 ). (0.28)

This plane-wave expansion will prove useful when we discuss stochastic GW backgrounds in section 0.2.

0.1 .5 Interaction of gravitational waves with test masses

Since GWs are distortions in the curvature of spacetime, they affect the solutions to the geodesic equa-
tion (0.2), and can thus influence the trajectories of particles. (Of course, there is no absolute reference
frame in GR, so we are really interested in how GWs affect the pairwise separation between different
geodesics.) These effects are obscured if we work in TT coordinates, as the relevant Christoffel symbols
for a particle initially at rest (𝑈 𝑖 = 0) are

𝛤 𝑖00 = ∂0ℎ
𝑖

0 − 1
2
∂𝑖ℎ00, (0.29)

which vanish by construction in the TT frame. As a result, the coordinate distance between two initially
stationary freely-falling particles is unaffected by GWs in this frame at linear order. However, the proper
distance between them (i.e., as measured using the spacetime metric) is affected, due to the time-varying
metric perturbationℎ𝑖 𝑗 . Since proper distances are diffeomorphism-invariant, we see that this must be a
physical effect and not a coordinate artefact.

In order to analyse the response of a system of test masses to an impinging GW, it is therefore preferable
to choose an alternative coordinate frame in which coordinate distances more closely follow the behaviour
of proper distances. We can do this by constructing the proper detector frame (also called Fermi coordinates),
in which the metric is locally flat with vanishing first derivatives along the trajectory of the system, with
no rotation of the coordinates along this trajectory (in the sense that the coordinate spin axes of freely-
spinning gyroscopes do not change over time). Since the metric is locally flat, coordinate distances are
then equal to proper distances if we work sufficiently close to the origin. It is straightforward to show that,
in this frame, the separation vector 𝜉 𝑖 between two nearby geodesics obeys ¥𝜉 𝑖 = 𝑅 𝑖00𝑗 𝜉

𝑗 [406], where
dots denote derivatives with respect to the coordinate time (which is locally equivalent to the system’s
proper time).

At this point, we could evaluate the Riemann tensor as a function of the metric perturbation in the
proper detector frame. However, it turns out that the components of the Riemann tensor are invariant
under gauge transformations in linearised GR (note this is a stronger statement than the tensor obeying

10



0.1 What are gravitational waves?

θ̂

φ̂

θ̂

φ̂

Figure 0.2: Deformation of a circular ring of test particles by a plane GW propagating out of the page. The left
panel shows the pure +-polarised case, while the right panel shows the ×-polarised case. The colour gradient
(from blue to red) shows how the deformation evolves over a time interval equal to half the GW oscillation
period. (Note that the amplitude of the deformation has been greatly exaggerated here for clarity.)

general covariance), so we are free to evaluate it in the TT frame, making the link to the physical GW
perturbation clearer. We therefore find that

¥𝜉 𝑖 = 1
2
¥ℎ𝑖 𝑗 𝜉 𝑗 , (0.30)

where 𝜉 𝑖 is the coordinate separation in the proper detector frame as before, andℎ𝑖 𝑗 is the metric perturb-
ation in the TT frame.

Substituting in the 𝒛 -pointing plane wave solution from equation (0.16), we find that equation (0.30)
has solutions

𝝃 =
1
2

e2πi𝑓 (𝑡−𝑧) [ℎ+(𝑥0�̂� − 𝑦0�̂� ) + ℎ×(𝑦0�̂� + 𝑥0�̂� )], (0.31)

where (𝑥0, 𝑦0) are the initial coordinates of the separation vector (we can treat these as constant on the
right-hand side here, as their variation over time only gives corrections of order ∼ ℎ2). The resulting
deformations of a circular ring of test particles are shown in figure 0.2, clearly demonstrating where the
plus and cross polarisations get their names from. We see that 𝝃 · 𝒛 = 0, so the GW is transverse as
expected.

When we say that equation (0.30) holds for pairs of ‘nearby’ geodesics, we mean that the size of the
separation vector 𝜉 is much less than the lengthscale over which the spacetime curvature varies—in this case,
the wavelength of the GW, 𝜆 ∼ 1/𝑓 . This situation, in which 𝜉 ≪ 𝜆, is called the small-antenna limit in
the context of GW detectors. As we discuss in section 0.4, this limit holds for some GW experiments (e.g.,
ground-based interferometers such as LIGO and Virgo), but not for others (e.g., pulsar timing arrays).
In the latter case, the right-hand side of equation (0.30) picks up higher-order terms in 𝜉 , as well as a
nontrivial dependence on the frequency of the GW.

11



0 Introduction: the dawn of gravitational-wave astronomy

0.1 .6 Generation of gravitational waves

We have focused thus far on the propagation of GWs in vacuum. However, in order to use GWs as
messengers which tell us about objects in the cosmos, we need to understand how said objects generate
GWs in the first place. To do so, we abandon the TT gauge momentarily (since our freedom to set certain
metric components to zero is inhibited by the presence of a source term), and return to the linearised EFE
in the harmonic gauge, equation (0.11). We can invert the flat-space d’Alembertian using the retarded
Green’s function,

G(𝑥, 𝑥 ′) = −𝛿 (𝑡 − 𝑡
′ − |𝒙 − 𝒙 ′ |)

4π|𝒙 − 𝒙 ′ | , □G(𝑥, 𝑥 ′) = 𝛿 (4) (𝑥 − 𝑥 ′). (0.32)

The corresponding solution for the trace-reversed metric perturbation is then given by

ℎ̄𝑖 𝑗 (𝑡 , 𝒙 ) = −16π𝐺
∫

d4𝑥 ′ G(𝑥, 𝑥 ′)𝑇𝑖 𝑗 (𝑥 ′) = 4𝐺
∫

d3𝒙 ′

|𝒙 − 𝒙 ′ |𝑇𝑖 𝑗 (𝑡 − |𝒙 − 𝒙 ′ |, 𝒙 ′), (0.33)

where the integral runs over a constant-time hyperslice. Outside of the source we are once again free to
impose the TT gauge, writing

ℎ𝑖 𝑗 (𝑡 , 𝒙 ) = 4𝐺
∫

d3𝒙 ′

|𝒙 − 𝒙 ′ |
[
𝑇𝑖 𝑗 (𝑡 − |𝒙 − 𝒙 ′ |, 𝒙 ′)

]TT
, (0.34)

where the ‘TT’ superscript indicates that we have extracted the transverse-traceless part of the energy-
momentum tensor (with the transverse directions defined relative to the propagation from the source
to 𝒙 ), so that the quantity on the left-hand side corresponds to a gauge-invariant GW propagating in
vacuum (see footnote 8).

In many physical situations, the motion of the source is more straightforwardly described in the Fourier
domain. We thus rewrite the energy-momentum tensor in terms of its spacetime Fourier transform,

𝑇𝑖 𝑗 (𝑡 , 𝒙 ) =
∫

d𝑓
∫

d3𝒌 e2πi( 𝑓 𝑡−𝒌 ·𝒙 )𝑇𝑖 𝑗 ( 𝑓 ,𝒌 ). (0.35)

Inserting this into equation (0.34), we find that the GW solution at distances much greater than the size
of the source is given by

ℎ𝑖 𝑗 (𝑡 , 𝒙 ) =
4𝐺
𝑟

∫
d𝑓 e2πi𝑓 (𝑡−𝑟 ) [𝑇𝑖 𝑗 ( 𝑓 , 𝑓 𝒓 )]TT

, 𝑟 ≫ max |𝒙 ′ |, (0.36)

where 𝒓 is a 3-vector pointing from the centre of the source to 𝒙 . Equivalently, we can write this in terms
of the plane wave components ℎ̃𝐴 using equation (0.28),

ℎ̃𝐴 ( 𝑓 , �̂�) =
2𝐺
𝑟

e−2πi𝑓 𝑟𝑒𝐴,𝑖 𝑗 (𝒓 )𝑇𝑖 𝑗 ( 𝑓 , 𝑓 𝒓 )𝛿 (2) (𝒓 , �̂�). (0.37)

Here the exponential phase factor reflects the time taken for the signal to reach distance 𝑟 (this can be
removed by translating the time coordinate used in the Fourier transforms), while the Dirac delta tells us

12



0.1 What are gravitational waves?

that the only nonzero plane wave component is that which points in the direction of the source.9 (Note
that the ‘TT’ subscript is no longer needed, as we have projected onto the TT polarisation tensors.)

Thus far we have made no assumptions about the source other than requiring it to be weakly-gravitating,
so as to be consistent with linearised GR. However, we can greatly simplify our description of GW
generation if we consider sources with internal velocities much smaller than the speed of light,10 𝑣 ≪ 1.
In this limit, the resulting GW signal is dominated by the mass quadrupole of the source,

ℎ𝑖 𝑗 (𝑡 , 𝒙 ) ≃
2𝐺
𝑟

[ ¥Q𝑖 𝑗 (𝑡 − 𝑟 )
]TT

, Q𝑖 𝑗 (𝑡 ) ≡
∫

d3𝒙 ′ 𝜌 (𝑡 , 𝒙 ′)𝑥 ′𝑖 𝑥
′
𝑗 , (0.38)

where 𝜌 ≡ 𝑇00 is the mass density. As a simple example, consider a system of two slowly-moving point
masses. In a frame where the centre of mass of the system is fixed at the origin, the quadrupole moment is
given by

Q𝑖 𝑗 = 𝑚1𝑥
𝑖
1𝑥

𝑗

1 +𝑚2𝑥
𝑖
2𝑥

𝑗

2 = 𝜇𝑅 𝑖𝑅 𝑗 (0.39)

(ignoring terms of order 𝑣2), where 𝑹 ≡ 𝒙 1 − 𝒙 2 is a 3-vector pointing from the position of one mass to
the other, and 𝜇 ≡ 𝑚1𝑚2/(𝑚1 +𝑚2) is the reduced mass of the system. The emitted GW signal is thus

ℎ𝑖 𝑗 ≃
4𝐺𝜇
𝑟

[ ¤𝑅𝑖 ¤𝑅 𝑗 + 𝑅 (𝑖 ¥𝑅 𝑗 )
]TT

, (0.40)

where the right-hand side is evaluated at the retarded time 𝑡 − 𝑟 .

0.1 .7 Energy and momentum of gravitational waves

The notions of energy and momentum are extremely intuitive and useful in understanding the physics
of GWs. However, they are also notoriously thorny issues in GR [535], as general covariance makes it
impossible to find a local measure (i.e., one defined at each point in spacetime) of gravitational energy-
momentum that all observers can agree on. To see this, note that the energy density of the gravitational field
in Newtonian gravity goes like∼ (∇𝜙)2 (where𝜙 is the Newtonian potential), so to ensure consistency in
the Newtonian limit we would expect any analogous quantity in GR to be quadratic in the first derivatives
of the metric, ∼ (∂𝑔 )2. The problem is that it is always possible to transform to a local inertial frame in
which these first derivatives vanish, and we can therefore always set any such quantity to zero at any point
in spacetime. (This problem arises in both linearised GR and the full nonlinear theory, and is just as much
of an obstacle for defining, e.g., the mass density of a BH as it is for defining the energy density of GWs.)

Nonetheless, we can still define a sensible quasi-local energy-momentum tensor for the gravitational
field by averaging over a region of spacetime, rather than focusing on a single point. The intuition here is
that, while ∂𝑔 can be set to zero at any individual point, it cannot be simultaneously set to zero at every
point in a sufficiently ‘large’ region of spacetime in any one coordinate frame.

9Here 𝛿 (2) (𝒓 , 𝒓 ′) ≡ 𝛿 (cos 𝜃 − cos 𝜃 ′)𝛿 (𝜙 − 𝜙 ′) is the Dirac delta function on the 2-sphere, defined such that we have∫
𝑆2 d2𝒓 ′ 𝑓 (𝒓 ′)𝛿 (2) (𝒓 , 𝒓 ′) = 𝑓 (𝒓 ) for test functions 𝑓 : 𝑆2 → R.

10Note that in virialised self-gravitating systems, 𝑣2 is of the same order of magnitude as the gravitational potential𝐺𝑀 /𝑅 , where
𝑀 and𝑅 are the mass and radius of the system; any self-gravitating system which is consistent with the linearised GR requirement
that𝐺𝑀 /𝑅 ≪ 1 must therefore also be slowly-moving, 𝑣 ≪ 1.
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0 Introduction: the dawn of gravitational-wave astronomy

There are two key approaches for constructing a quasi-local energy-momentum tensor for GWs.11 One
is to write down a Lagrangian for linearised GR and use Noether’s theorem to identify the conserved
currents associated with the invariance of this Lagrangian under spacetime translations (this is the usual
procedure for defining energy and momentum in other field theories). The other is to work directly with
the EFE and study how GWs backreact on spacetime, acting as a source for further perturbations to the
metric.12 Both approaches yield the same answer:

𝑇
𝜇𝜈

gw =
1

32π𝐺
〈
∂𝜇ℎ𝛼𝛽∂𝜈ℎ𝛼𝛽

〉
, (0.41)

where the angle brackets denote a quasi-local spatial average over a region much larger than the wavelength
of the GW (or equivalently, a temporal average over many periods). In particular, the quasi-local GW
energy density is

𝜌gw =
1

32π𝐺
〈 ¤ℎ𝛼𝛽 ¤ℎ𝛼𝛽 〉. (0.42)

These expressions apply so long as we are in the harmonic gauge, and are invariant under the remaining
gauge transformations by virtue of the averaging process.

Using equation (0.41), we can thus calculate the total GW energy flux radiated by a generic isolated
source in a given direction 𝒓 over all time,

d𝐸gw

d2𝒓
=

𝑟 2

32π𝐺

∫
R

d𝑡 ¤ℎ𝑖 𝑗 ¤ℎ𝑖 𝑗 =
𝑟 2

16π𝐺

∫
R

d𝑡 | ¤ℎ |2 =
π𝑟 2

2𝐺

∑︁
𝐴=+,×

∫ ∞

0
d𝑓 𝑓 2 |ℎ̃𝐴 |2. (0.43)

Here we assume that the flux is measured at a radius 𝑟 much larger than both the size of the source and
the wavelengths of interest,13 yet small enough that cosmological expansion can be neglected. We have
assumed we are in vacuum, such that we are free to select the TT gauge and replace 𝛼 and 𝛽 by purely
spatial indices. We have also removed the angle brackets, since the time integral averages over many GW
periods for us. The final equality uses Parseval’s theorem to convert the time integral into a frequency
integral.

0.1 .8 Gravitational-wave memory

Much of our basic intuition for the behaviour of GWs comes from examples of wavelike systems we are
familiar with in our everyday lives, such as the propagation of ripples on the surface of a pond. These
analogies encourage us to visualise GWs as shown in the left panel of figure 0.3: an incoming wave packet

11A detailed derivation of equation (0.41) using both approaches described here can be found in Maggiore [406].
12This approach requires us to go beyond the flat-background perturbation theory we have adopted so far, as we must allow the

background spacetime to evolve dynamically to study how it responds to the energy-momentum carried by the GWs. In order
for the distinction between the background and the GWs to be unambiguous, we require a separation of scales (either spatial
or temporal) between the low-frequency/long-wavelength variations in the background metric and the high-frequency/short-
wavelength perturbations due to the GWs. One can then develop an effective theory of the metric on large scales by ‘integrating
out’ the GW perturbations, with equation (0.41) representing a renormalisation correction to the total energy-momentum
tensor due to this coarse-graining.

13The leading-order piece of the GW strain we are interested in goes as ∼ 1/𝑟 at large distances, and is thus compensated by the
factor of 𝑟 2 in equation (0.43). To get an invariant expression for the energy flux we must therefore choose 𝑟 large enough that
the next-to-leading order ∼ 1/𝑟 2 piece of the strain is negligible. Taking 𝑟 much larger than the GW wavelength and the size of
the source achieves this.
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0.1 What are gravitational waves?

1. Burst without memory 2. Burst with memory

Figure 0.3: A cartoon illustration of the memory effect. In the left panel, a gravitational-wave burst passes and
the strain returns to its initial value. In the right panel, a gravitational-wave burst passes and leaves a nonzero
memory offset.

causes some initially quiescent quantity (e.g., the vertical displacement of a leaf floating on the pond, or
the proper distance between two freely-falling test masses) to oscillate until it eventually returns to its
starting value. Remarkably, this intuitive picture is often wrong in the case of GWs, as there are many
situations in which the GW strain does not return to its initial value, but instead settles down with some
fixed offset from its starting point (as illustrated in the right panel of figure 0.3), i.e.,

∆ℎ𝑖 𝑗 ≡ lim
𝑡→+∞

ℎ𝑖 𝑗 (𝑡 ) − lim
𝑡→−∞

ℎ𝑖 𝑗 (𝑡 ) ≠ 0. (0.44)

This corresponds to a permanent change in the GW measurement apparatus, and is therefore called the
GW memory effect [151, 152, 265], as the apparatus ‘remembers’ the passage of the wave packet.

Though surprising at first, it is straightforward to derive this effect by solving the linearised EFE for
sources whose energy-momentum tensor undergoes a permanent change between early and late times.
For example, consider the GW signal (0.40) that we derived above for two slowly-moving test masses.
We see immediately that if the relative velocity or acceleration of the two bodies is different at early and
late times, then the resulting GW signal will exhibit a memory effect like that shown in figure 0.3. Such
situations typically occur when the system is gravitationally unbound,14 either in ‘scattering-like’ events
where the masses follow a hyperbolic orbit, undergoing a permanent change in their velocities due to their
gravitational interaction, or in ‘explosion-like’ events where the masses are initially bound, but become
unbound due to some injection of energy and escape to infinity with nonzero velocities. These examples are
both simplified descriptions of real astrophysical GW sources, such as stellar scattering [149, 379, 517, 550,
551, 595], core-collapse supernovae [162, 257, 378, 440, 552], and gamma-ray bursts [60, 127, 494, 503],

14Gravitationally-bound systems such as compact binaries do generate some linear memory if the merger product has a non-zero
recoil velocity, but this linear memory signal is likely far too weak to be detected [262], even for systems with maximal recoil
velocities (the so-called ‘super-kick’ configuration) [167].
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0 Introduction: the dawn of gravitational-wave astronomy

as well as more idealised theoretical setups such as high-energy particle decay [68, 548, 549]. In both cases
the GW memory associated with the signal (0.40) is given by

∆ℎ𝑖 𝑗 ≃ ∆
4𝐺
𝑟
𝜇(𝑣𝑖𝑣𝑗 )TT, (0.45)

where 𝒗 ≪ 1 is the relative velocity, and we have neglected the acceleration term, which vanishes at
𝑡 → ±∞ in both examples. This expression is readily generalised to relativistic velocities and more than
two particles, giving [542]

∆ℎ𝑖 𝑗 = ∆
4𝐺
𝑟

∑︁
𝑎

𝑚𝑎𝛾𝑎
(𝑣𝑎,𝑖𝑣𝑎,𝑗 )TT

1 − 𝒓 · 𝒗𝑎
, (0.46)

where the index 𝑎 labels the particles,𝛾𝑎 ≡ (1 − 𝑣2
𝑎 )−1/2 is the Lorentz factor of particle 𝑎 , and 𝒓 is the

GW propagation direction.
While GW memory effects associated with unbound systems have been studied since the 1970s [149,

257, 379, 517, 550–552, 595], it was not until 1991 that Christodoulou [201] pointed out a much more
generic memory effect which accompanies essentially any source of GWs,15 called the nonlinear memory
(or sometimes, ‘Christodoulou memory’),

∆ℎ𝑖 𝑗 =
4𝐺
𝑟

∫
𝑆2

d2𝒓 ′ d𝐸gw

d2𝒓 ′
(𝑟 ′
𝑖
𝑟 ′
𝑗
)TT

1 − 𝒓 · 𝒓 ′ . (0.47)

(In contrast, the effect encapsulated by equation (0.46) is called the linear memory.) The reason the
nonlinear memory effect went unnoticed for so long is that it is absent in the linearised theory, and
was only discovered by Christodoulou using rigorous asymptotic methods [201] developed in his proof
(with Klainerman) of the global nonlinear stability of Minkowski space [202]. (The same effect was also
discovered soon after by Blanchet and Damour [129] in the very different context of post-Minkowskian
theory.) We see that the nonlinear memory is sourced not by the momenta of unbound particles escaping
to infinity as in equation (0.46), but instead by the GW energy radiated by the source. In fact, as Thorne
[542] pointed out soon after Christodoulou’s result, we can straightforwardly interpret equation (0.47)
as the linear memory (0.46) associated with the gravitons radiated by the source. To see this, we need
only make three small modifications to equation (0.46):

1. replace𝑚𝑎𝛾𝑎 by 𝐸𝑎 , the energy of each graviton (as measured in the observer’s rest frame);

2. let 𝒗𝑎 have unit magnitude (since gravitons propagate at the speed of light);

3. take the limit of infinitely many particles (i.e., the classical limit), so that the sum
∑
𝑎 is replaced by

an integral over a smooth angular distribution.

(The ∆ symbol is also unnecessary on the right-hand side of equation (0.47), since we assume the GW flux
from the source is zero in the distant past, 𝑡 → −∞.) This interpretation makes clear why such an effect
is only present in the full, nonlinear theory: it is due to the backreaction of gravitational perturbations on
spacetime, a phenomenon which is neglected when working with a fixed, non-dynamical background.

15The only exception is when the integrand of equation (0.47) has vanishing TT component; e.g., when the radiated GW flux is
exactly isotropic.
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Figure 0.4: A taxonomy of four key gravitational-wave signal morphologies: phase-coherent transients such as
compact binaries; persistent phase-coherent signals such as the ‘continuous waves’ emitted by spinning neutron
stars; incoherent transients (i.e., bursts), such as those emitted by core-collapse supernovae; and persistent,
incoherent signals—namely, the stochastic background.

While the memory effect was first discovered in the context of classical GR, it has been recognised in
recent years that analogous memory effects are a generic feature of field theories with massless degrees of
freedom [124, 448, 534, 548, 549]. Explicit examples that have been studied include ‘electromagnetic
memory’ in electrodynamics [124, 168, 360, 534] and ‘colour memory’ in Yang-Mills theory [94, 168,
351, 352, 448], with the photon and the gluon playing the rôle of the graviton, respectively. Related work
(principally conducted by Strominger and his collaborators) has shown that these memory effects are
intimately related to both the asymptotic symmetries of the fields in each theory and to ‘soft theorems’
which govern the production of low-energy massless particles in the corresponding quantum theory [271,
308, 360, 446, 447, 530, 531]. These deep theoretical links add to the appeal of GW memory as a tool for
understanding GR and probing the true nature of the gravitational field.

0.2 The gravitational-wave background

We have seen in section 0.1 that GR predicts the existence of two massless propagating degrees of freedom
associated with TT perturbations to the gravitational field. These are generated by the motion of matter
fields, meaning that the GW signals we receive on Earth can be used to infer the properties of distant
objects in the Universe. In this section we turn our attention to a GW signal that is of particular interest
to cosmologists: the stochastic GW background (SGWB) [67, 170, 200, 405, 470, 487]. We begin by
discussing what distinguishes this signal from the compact binary signals detected thus far by LIGO/Virgo,
before covering its statistical properties, how to model its expected amplitude, and how best to search for
it in noisy data.
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0 Introduction: the dawn of gravitational-wave astronomy

0.2 .1 What is the stochastic background?

Imagine we have constructed a GW detector (a few examples of which are described in section 0.4),
and we switch it on. What kinds of signals might we expect to see? This simple question is incredibly
important for GW astronomy, due to the fact that GWs are typically extremely faint and therefore difficult
to distinguish from instrumental noise. Unlike in EM astronomy, where the signal is often very easily
distinguishable from the noise (even instruments with very high noise levels, such as the naked eye, can
easily detect many EM signals in the night sky), signal detection in GW astronomy relies on sophisticated
statistical methods, with the best approach depending strongly on the morphology of the signal.

Of all the ways we might characterise a GW signal, there are two questions that are perhaps the most
important:

1. Is the signal transient, or is it persistent? i.e., does the signal only appear in the detector for a relatively
short time, or is it ‘always on’?16

2. Is the signal coherent, or is it incoherent? i.e., are we able to deterministically model the phase of the
signal, or does our lack of knowledge about the source force us to treat the phase as random?17

These two pairs of categories define four different kinds of GW signal (as illustrated in figure 0.4), each of
which has its own set of specialised search methods.18

Phase-coherent signals are by far the easiest to search for, since one can use the technique of matched
filtering (convolving the data with a template which encapsulates our knowledge of the signal); assuming a
perfect template and Gaussian noise, this returns the maximum signal-to-noise ratio (SNR) of any possible
search [573]. In the case of incoherent signals it is, by definition, impossible to construct a template, so this
option is not available to us. Transient signals also present a key search advantage compared to persistent
signals, as their arrival represents a change in the state of the detector; persistent signals, on the other hand,
are harder to disentangle from the instrumental noise, which is also ‘always on’.19 It is unsurprising, then,
that all of the GWs detected by LIGO/Virgo thus far originated from compact binaries; as we show in
section 0.3.1, these are prime examples of transient, phase-coherent signals.

Consider, however, the situation depicted in figure 0.5, in which we have a cosmic population of
sources distributed throughout the Universe; these could be compact binaries, or any other population of
GW sources.20 Since the strain signal from each of these sources falls off like ∼ 1/𝑟 , any instrument will

16Note that ‘relatively short’ means relative to a typical observational timescale. A signal lasting for, say, several centuries, while
certainly transient on astronomical timescales, would be treated as persistent for our purposes here.

17It is interesting to note that in EM astronomy, essentially all signals are incoherent; one rarely attempts to measure the phase of
electromagnetic waves, only their intensity. This is because astronomical EM radiation is typically associated with the random,
thermal motion of charges on microscopic scales, which is impossible to model in a phase-coherent way. Viewed through this
lens, we see that the use of matched filtering in GW astronomy relies on the large-scale, coherent motion of macroscopic massive
bodies (such as the components of a compact binary) to generate signals whose phase can be modelled accurately. One can see
this as a consequence of the universally-attractive nature of gravity; an analogous system of coherently oscillating macroscopic
charges would be very difficult to realise in the Universe due to the cancellation of positive and negative charges on smaller scales.

18As a result of this, these four categories correspond exactly to the four main data analysis working groups in the
LIGO/Virgo/KAGRA Collaboration. For an introduction to some of the methods used by each group, see Creighton and
Anderson [218] or Maggiore [406].

19On the other hand, of course, there are many advantages to searching for a signal one knows is always present. With transient
searches, there is always a risk of missing rare and exciting signals due to changes in the state of the detector.

20In some contexts it makes sense to replace the notion of ‘individual sources’ here with ‘individual Hubble patches’ in which
some cosmological GW production process takes place; e.g., the GWs generated by a first-order phase transition, which we
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0.2 The gravitational-wave background

Figure 0.5: A cosmic population of gravitational-wave sources gives typically gives rise to a small number of signals
that are individually resolvable (the ‘foreground’), and a much larger number that are not (the ‘background’).
The combined emission from the latter gives rise to a persistent, incoherent signal that we call the stochastic
background.

inevitably have a ‘detection horizon’ beyond which the signals are too faint to be distinguished from noise.
We can also see in figure 0.5 that, so long as the number density of sources doesn’t fall off too quickly, the
total number of sources grows rapidly as a function of distance (since the size of a spherical shell of radius
𝑟 grows like ∼ 𝑟 2). As a result, we might have a situation where it is impossible to distinguish individual
sources from each other past a certain distance due to the ‘confusion noise’ from many overlapping signals,
even if these are all inside the detection horizon.

In both situations, matched filtering is no longer effective at detecting individual sources. But the GWs
emitted by these sources are still present in the detector, and can still be searched for using other methods.
Instead of focusing on individual sources, it becomes more useful to consider the entire population of
sources together, treating their combined GW emission as one aggregate signal. Since these sources are
typically very widely separated from each other, we expect them to be causally disconnected, meaning
that there is no discernible pattern in the arrival times of each individual signal. This makes it impossible
to deterministically model the phase of the aggregate signal, even if we have a perfect template for each
individual signal, as we cannot predict how each of their independent phases will combine. It also means
that we should expect the signal to be time-translation invariant (at least in a statistical sense), since there
is no reason to expect that all of these distant, independent sources should conspire to emit their GWs
at the same time. We therefore have a persistent, incoherent signal associated with essentially any cosmic

discuss below in section 0.3.2. The rest of the discussion here still holds in cases like this, with the caveat that typically none of
the ‘sources’ are individually resolvable.
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0 Introduction: the dawn of gravitational-wave astronomy

population of GW sources. We call this signal a stochastic gravitational-wave background (SGWB);21

‘stochastic’ because of its random, nondeterministic phase evolution, and ‘background’ because of its
association with a large number of distant sources. In contrast, the small number of nearby, individually
resolvable sources form what we might call a ‘foreground’.22

As discussed above, persistent and incoherent signals like the SGWB are the most difficult to search
for, since our ignorance of the phase evolution means we are unable to use matched filtering, and the
lack of a distinct arrival time makes it hard to differentiate between the signal and the detector noise. So
why should we bother? The answer can be seen in figure 0.5: being associated with distant sources, the
SGWB can give us a glimpse of the Universe at high redshift and on large scales, revealing cosmological
information that is inaccessible with individual nearby detections alone. We therefore see that the SGWB
is an indispensable tool in our effort to probe cosmology and fundamental physics with GW observations.

In practice, the distinction between ‘phase-coherent’ and ‘phase-incoherent’ signals is somewhat blurry,
particularly when the incoherence comes from a finite number of overlapping signals (e.g., in the compact
binary case) [216]. If the number of such signals is sufficiently small, and if the phase evolution of each
individual signal is well-known, then it is possible to use semi-coherent search methods that leverage
this knowledge and outperform traditional stochastic searches—see, in particular, Smith and Thrane
[518] for a Bayesian methodology that relies on the known phase evolution of BBH signals, as well as the
relatively low expected rate of stellar-mass BBHs in the Universe. In recognition of this ambiguity, we will
often drop the word ‘stochastic’ below, and simply refer to the GW signal we have described above as
the gravitational-wave background (GWB). Our philosophy is that the words ‘deterministic/stochastic’,
‘coherent/incoherent’, etc., are best applied to GW search methods, and that different search methods with
varying degrees of phase coherence may be suited to different GWB signals from different populations of
sources. Notwithstanding this distinction, the remainder of this section (and indeed, of this thesis) is
primarily concerned with phase-incoherent GWB searches, as these are simpler conceptually, and have
thus far been applied much more successfully in practice due to computational challenges associated with
semi-coherent Bayesian searches.

0.2 .2 Statistical properties of the gravitational-wave
background

Assuming we are unable to deterministically model the phase evolution of the GWB, the best we can
hope to do is specify the statistical properties of the strain. Performing the plane wave expansion as in
equation (0.27), we therefore treat the components ℎ̃𝐴 ( 𝑓 , 𝒓 ) as random variables. In this section, we
‘derive’ a list of standard assumptions that are made about the probability distribution governing these
random strain components.

21We will often refer to ‘a’ stochastic background, meaning the persistent, incoherent signal associated with one particular
population of sources (e.g., compact binaries), as opposed to ‘the’ stochastic background, which refers to the superposition of all
such stochastic signals, which is what we see in a detector. The question of how best to distinguish between multiple stochastic
signals which might be simultaneously measured by a detector is an important open problem in GW astronomy [144, 146, 171,
272, 300, 415, 445, 471, 491, 513, 532], which we do not discuss further in this thesis.

22In some contexts the term ‘foreground’ has negative connotations, and implies that the signal in question is a nuisance factor
which one must mitigate in order to observe the underlying target signal (e.g., polarised dust emission from the Milky Way acts
as a nuisance foreground for CMB observatories [54]). The situation is different here, as both foreground and background are
extremely scientifically valuable in GW astronomy.
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0.2 The gravitational-wave background

The fact that the GWB is, by definition, composed of a large number of statistically independent sources
allows us to invoke the central limit theorem and treat ℎ̃𝐴 ( 𝑓 , 𝒓 ) as Gaussian. This reduces the problem of
specifying an entire probability density function down to just specifying the first two moments,〈

ℎ̃𝐴 ( 𝑓 , 𝒓 )
〉
,

〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗

𝐴′ ( 𝑓
′, 𝒓 ′)

〉
, (0.48)

where ⟨· · ·⟩ here denotes an expectation value. This follows from Isserlis’ theorem, which states that all
higher-order moments are trivial for a set of Gaussian random variables.

Since ℎ̃𝐴 ( 𝑓 , 𝒓 ) is a complex number, we can write it in terms of an amplitude and a complex phase
(both of which are functions of frequency, propagation direction, and polarisation mode),

ℎ̃𝐴 ( 𝑓 , 𝒓 ) = A𝐴 ( 𝑓 , 𝒓 )ei𝜑𝐴 ( 𝑓 ,𝒓 ) . (0.49)

It is not difficult to convince oneself that the phase 𝜑𝐴 ( 𝑓 , 𝒓 ) should be uniformly distributed on [0, 2π),
and should be statistically independent of the amplitude A𝐴 ( 𝑓 , 𝒓 ). Indeed, this follows immediately
from the assumption that the signal is statistically invariant under time translations 𝑡 → 𝑡 − 𝜏 (i.e.,
the signal is stationary), since the definition of the Fourier transform implies that such a translation
gives 𝜑𝐴 ( 𝑓 , 𝒓 ) → 𝜑𝐴 ( 𝑓 , 𝒓 ) − 2π𝑓 𝜏 while leaving the amplitude constant. We see that the probability
distribution of 𝜑𝐴 ( 𝑓 , 𝒓 ) must be identical to that of 𝜑𝐴 ( 𝑓 , 𝒓 ) + 𝑐 (modulo 2π) for an arbitrary constant
shift 𝑐 , which can only be satisfied if the distribution is uniform. We also see that the amplitude is invariant
even though the phase is shifted, meaning that the two must be statistically independent of each other.
As a result, we see that the first moment of the GWB strain must vanish,〈

ℎ̃𝐴 ( 𝑓 , 𝒓 )
〉
=

〈
A𝐴 ( 𝑓 , 𝒓 )ei𝜑𝐴 ( 𝑓 ,𝒓 )

〉
= ⟨A𝐴 ( 𝑓 , 𝒓 )⟩

〈
ei𝜑𝐴 ( 𝑓 ,𝒓 )

〉
= 0, (0.50)

since ⟨ei𝜑 ⟩ vanishes if 𝜑 is uniform.
In order to evaluate the second moment, we need to know about the two-point statistics of A𝐴 ( 𝑓 , 𝒓 )

and 𝜑𝐴 ( 𝑓 , 𝒓 ). Here we can use the distinguishing feature of the stochastic background, which is that
the arrival times of GWs from each individual source are statistically independent due to each source
being causally disconnected from the others. (Recall that this is the fundamental reason why we are
unable to use matched filtering for stochastic signals.) This implies that the phases of any two plane-wave
components are statistically independent from each other, with the only exception being when they have
the same frequency, propagation direction, and polarisation state (since they are then just two copies of
the same random variable),23

Cov
[
ei𝜑𝐴 ( 𝑓 ,𝒓 ) , ei𝜑𝐴′ ( 𝑓 ′,𝒓 ′)

]
=

〈
ei[𝜑𝐴 ( 𝑓 ,𝒓 )−𝜑𝐴′ ( 𝑓 ′,𝒓 ′) ]

〉
∝ 𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (𝒓 , 𝒓 ′). (0.51)

23One might object that cosmological sources of GWs can be causally connected if the Universe underwent a period of inflation
at early times which shrank the comoving size of the cosmological horizon; this is the leading explanation for why different
Hubble patches in the CMB have such similar temperatures. (Indeed, this ‘horizon problem’ was one of the original theoretical
motivations for inflation [584].) However, Margalit et al. [412] have shown that even if phase-coherent correlations do exist in
the GW signal at early times, this coherence is lost as the GWs propagate across the Universe, as each GW experiences a large
phase shift δ𝜑 ≫ 2π due to inhomogeneities in the gravitational potential along its line of sight. This argument holds for GW
frequencies 𝑓 ≳ 10−12 Hz, which covers the entirety of the frequency range we are interested in here, meaning that we can safely
assume zero phase correlation between different lines of sight.
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0 Introduction: the dawn of gravitational-wave astronomy

As a result, we have〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗

𝐴′ ( 𝑓
′, 𝒓 ′)

〉
=

〈
A𝐴 ( 𝑓 , 𝒓 )A𝐴′ ( 𝑓 ′, 𝒓 ′)

〉〈
ei[𝜑𝐴 ( 𝑓 ,𝒓 )−𝜑𝐴′ ( 𝑓 ′,𝒓 ′) ]

〉
∝

〈
[A𝐴 ( 𝑓 , 𝒓 )]2〉𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (𝒓 , 𝒓 ′).

(0.52)

(Note that we have made no assumptions about whether the amplitudes of different sources are statistically
independent or not.)

The two Dirac delta functions in equation (0.52) are somewhat surprising at first, as they seem to
imply that the variance of each individual plane wave component,

〈
|ℎ̃𝐴 ( 𝑓 , 𝒓 ) |2

〉
, is infinite. In fact, this

is only true in the idealised situation where we have infinitely fine frequency resolution δ𝑓 and angular
resolution δ𝒓 . In practice, we are only able to resolve a finite set of discrete frequency bins 𝑓𝑖 and sky
pixels 𝒓 𝑖 , so that the Dirac deltas are replaced by Kronecker deltas,

𝛿 ( 𝑓𝑖 − 𝑓𝑗 ) →
𝛿𝑖 𝑗

δ𝑓
, 𝛿 (2) (𝒓 𝑖 , 𝒓 𝑗 ) →

𝛿𝑖 𝑗

δ𝒓
. (0.53)

However, since we are usually only interested in integrals over the second moment (0.52) (e.g., in equa-
tion (0.57) below) we can safely keep the Dirac deltas in equation (0.52), with the understanding that
they represent an idealised continuum limit.

We have thus determined the second moment up to some unknown deterministic function of frequency,
sky direction, and polarisation,〈

ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗
𝐴′ ( 𝑓

′, 𝒓 ′)
〉
= 𝑆𝐴 ( 𝑓 , 𝒓 )𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (𝒓 , 𝒓 ′). (0.54)

At this point it is useful to recall from section 0.1.4 that the amplitudes of the two polarisation modes are
not fixed for a given plane wave, but undergo mixing when ones rotates around the line of sight, as in
equation (0.23). If we assume the polarisation angle of each source,𝜓 ( 𝑓 , 𝒓 ), is uniformly distributed,
then by a very similar argument to that above we conclude that this unknown function must be equal for
each polarisation mode,

𝑆 ( 𝑓 , 𝒓 ) ≡ 𝑆+( 𝑓 , 𝒓 ) = 𝑆×( 𝑓 , 𝒓 ), (0.55)

since we can arbitrarily rotate +-modes into ×-modes and vice versa. This assumption of a uniform
distribution in𝜓 ( 𝑓 , 𝒓 ) is fairly robust, particularly for astrophysical sources, since there is generally no
reason to expect sources to be preferentially aligned along any particular direction around the line of
sight. Note, however, that there are several models of the early Universe that give rise to a GWB with
nontrivial polarisation content, for example through couplings to parity-violating matter fields [51, 52,
64, 98, 239, 401], the addition of parity-violating terms to the gravitational action [63, 105, 211, 499,
536, 576], or the generation of helical magnetohydrodynamic (MHD) turbulence in the primordial
plasma [173, 252, 354, 374]. Specialised search methods have been developed for polarised backgrounds
such as these [242, 253, 414, 507, 508, 510, 511, 519]; however, we will not discuss these further here,
since the unpolarised assumption (0.55) is expected to be valid for all of the GW sources we investigate in
this thesis.
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0.2 The gravitational-wave background

Figure 0.6: Left panel: a statistically isotropic field on the sphere. Right panel: an exactly isotropic field on the
sphere. Most stochastic background searches assume the latter.

The final assumption that is usually made in describing the statistics of the GWB is that its intensity is
isotropic, i.e., the same in all directions on the sky. This implies that the function 𝑆 ( 𝑓 , 𝒓 ) characterising
the second moment of the GWB strain is independent of sky direction, and therefore depends only
on frequency. The motivation for this assumption comes from the statistical isotropy of many other
cosmological observables; the CMB, for instance, varies in intensity by only a few parts in 105 across the
sky. It is important to point out, however, that statistical isotropy (i.e., invariance of expectation values of
the observed field under sky rotations) is not the same as exact isotropy (i.e., invariance of the field itself
under rotations), which is being assumed here; see figure 0.6. Indeed, modern cosmology has forcefully
demonstrated that, even if departures from exact isotropy and homogeneity are small, they are incredibly
important tools for understanding the structure and evolution of the Universe. In this sense, isotropy is
the least well-justified of all the assumptions we have made thus far. In chapter 1 of this thesis we revisit
this assumption, and investigate what can be learned by considering anisotropies in the GWB.

0.2 .3 The gravitational-wave density parameter

To summarise, we have shown that by assuming the GWB to be Gaussian, stationary, unpolarised, and
isotropic, with no nontrivial phase correlations, we can write〈

ℎ̃𝐴 ( 𝑓 , 𝒓 )
〉
= 0,

〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗

𝐴′ ( 𝑓
′, 𝒓 ′)

〉
= 𝑆 ( 𝑓 )𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (𝒓 , 𝒓 ′), (0.56)

such that the strain statistics are fully characterised by a single function of frequency, 𝑆 ( 𝑓 ). The fact that
ℎ𝑖 𝑗 (𝑡 , 𝒙 ) is real implies that 𝑆 ( 𝑓 ) is real and even-valued, 𝑆 ( 𝑓 ) = 𝑆∗( 𝑓 ) = 𝑆 (−𝑓 ).

This function is not arbitrary; it is directly related to the energy spectrum of the GWB. To see this,
we insert the plane-wave expansion (0.27) and the GWB moments (0.56) into the expression for the
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0 Introduction: the dawn of gravitational-wave astronomy

quasi-local GW energy density we obtained previously, equation (0.42). Placing our detector at the origin
𝒙 = 0 (which we assume to be effectively in vacuum, such that we can work in the TT gauge), this gives

𝜌gw =
1

32π𝐺
〈 ¤ℎ𝑖 𝑗 ¤ℎ𝑖 𝑗 〉

=
π

8𝐺

∫
R

d𝑓
∫
R

d𝑓 ′
∫
𝑆2

d2𝒓

∫
𝑆2

d2𝒓 ′ e2πi𝑡 ( 𝑓 −𝑓 ′)𝑒𝐴,𝑖 𝑗 (𝒓 )𝑒𝐴′𝑖 𝑗 (𝒓
′) 𝑓 𝑓 ′

〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗

𝐴′ ( 𝑓
′, 𝒓 ′)

〉
=

π

8𝐺

∫
R

d𝑓
∫
𝑆2

d2𝒓 𝑒𝐴,𝑖 𝑗 (𝒓 )𝑒𝐴𝑖 𝑗 (𝒓 ) 𝑓
2𝑆 ( 𝑓 ) = 4π2

𝐺

∫
R

d(ln 𝑓 ) 𝑓 3𝑆 ( 𝑓 ),

(0.57)

where in the last line we have used equation (0.21), and have restricted ourselves to positive frequencies
(without loss of generality), so that ln 𝑓 is well-defined.24 We therefore find

𝑆 ( 𝑓 ) = 𝐺

4π2 𝑓 3

d𝜌gw

d(ln 𝑓 ) , (0.58)

so that the strain statistics of the GWB are uniquely determined by the frequency spectrum of the GW
energy density.

Since the GWB is a cosmological observable, it is often convenient to normalise its energy density with
respect to the present-day critical energy density of the Universe (i.e., the energy density required for the
Universe to be spatially flat). We therefore define the dimensionless GWB density parameter (or simply
GWB spectrum),

𝛺gw( 𝑓 ) ≡
1
𝜌c

d𝜌gw

d(ln 𝑓 ) , 𝜌c ≡
3𝐻 2

0
8π𝐺

, (0.59)

with the total normalised energy density in GWs being given by
∫
R

d(ln 𝑓 ) 𝛺gw( 𝑓 ). This brings the GWB
in line with how cosmologists describe other sources of energy density in the Universe; see, e.g., table 0.1.
(When there is no chance of confusion with other density parameters we will omit the ‘gw’ subscript, and
simply write 𝛺 ( 𝑓 ).) Equation (0.56) thus becomes

〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )

〉
= 0,

〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗

𝐴′ ( 𝑓
′, 𝒓 ′)

〉
=

3𝐻 2
0 𝛺gw( 𝑓 )

32π3 | 𝑓 |3 𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (𝒓 , 𝒓 ′). (0.60)

As we will see below, the values of 𝛺gw( 𝑓 ) predicted by most models of the GWB (and indeed, the
values allowed by current observations) are much smaller than any of those in table 0.1, even those of
photons and neutrinos. This shows that GW cosmology is ‘doubly hard’: not only are GWs difficult to
detect due to how weakly they couple to our detectors, but they are also not very abundant in the Universe,
making up a minuscule fraction of the cosmic energy budget. However, as we will see in subsequent

24Note that we have indulged in a slight abuse of notation here: we have treated the angle brackets ⟨· · ·⟩ in equation (0.42)
identically to those in equation (0.56), even though the former represent a spatial or temporal average of a single GWB realisation
over a region of spacetime, while the latter represent an ensemble average over many random realisations of the GWB at a single
point in spacetime. We can interchange these two averaging processes if we assume that the GWB is ergodic such that, given
sufficient time or a large enough spatial volume, the number of occurrences of a given value of the GWB strain is proportional
to the probability assigned to that value by the distribution in equation (0.56). Ergodic processes are ubiquitous in physics
whenever we have a configuration space of finite size—as is the case here, since the GWB strain cannot become arbitrarily large.
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0.2 The gravitational-wave background

Source of energy density, 𝑋 Density parameter, 𝛺𝑋 ≡ 𝜌𝑋 /𝜌c

Dark energy (𝛬) 0.689
Cold dark matter (CDM) 0.261
Baryonic matter 0.0490
Photons (𝛾 ) 0.0000543
Neutrinos (𝜈) 0.0000375
All matter (baryons + CDM) 0.311
All radiation (𝛾 +𝜈) 0.0000918
Total 1.00

Table 0.1: Present-day cosmological density parameters of the main components of the𝛬CDM model, as determ-
ined by Planck 2018, TTTEEE+lowE+lensing+BAO [55]. We assume the Standard Model value of the effective
number of neutrino species,𝑁eff = 3.045 [496].

chapters, the challenges involved in detecting the GWB are more than compensated by the immense
scientific value such a detection would have.

It is worth noting briefly that the energy density we have chosen to normalise against, 𝜌c, depends on
a quantity whose value has historically been somewhat poorly determined: the Hubble constant, 𝐻0.
For this reason, some authors characterise the GWB in terms ofℎ2𝛺gw rather than just 𝛺gw, whereℎ is
defined by𝐻0 = ℎ × 100 km s−1 Mpc−1; this then has the advantage of being insensitive to uncertainties
in𝐻0. We choose not to do this here. Instead, we assume the Planck 2018 value ℎ = 0.677 whenever
quoting values for 𝛺gw. While this is discrepant with the value ℎ = 0.732 inferred from local distance
ladder measurements [482] (the infamous ‘Hubble tension’—see, e.g., Verde et al. [563]), the resulting
change in 𝛺gw is only a factor of ≈ 1.17, which is negligible in most situations.

0.2 .4 Modelling gravitational-wave backgrounds

Given a model for a particular cosmic population of GW sources, we can calculate the corresponding
density parameter 𝛺 ( 𝑓 ) as follows. First, consider the GW energy density we observe today due to a
single source, which is equal to the rate of GW energy passing through a spatial 2-surface surrounding us
per unit surface area. In a Euclidean Universe, we can write this as

𝜌 =
1

4π𝑟 2
d𝐸
d𝑡
, (0.61)

where 𝑟 is the distance to the source, and d𝐸/d𝑡 is the rate at which it emits energy in GWs (which we
have implicitly averaged over inclination). In a FLRW Universe, this expression still holds so long as we
replace the Euclidean distance 𝑟 by the luminosity distance 𝑑𝐿 , and replace the global time 𝑡 by the time
in the source’s rest frame, 𝑡s. Both 𝑑𝐿 and 𝑡s are functions of redshift, 𝑧 .

For an individual signal, d𝐸/d𝑡s is an arbitrary function of time. However, when we combine a
large number of signals, we expect this energy emission rate to reduce to its time-averaged value (due to
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0 Introduction: the dawn of gravitational-wave astronomy

ergodicity, see footnote 24), which is just the product of the mean rate of signals25 per unit source time,
𝑅 , and the total energy emitted by each signal, 𝐸 , so that d𝐸/d𝑡s → 𝑅𝐸 . If we focus on just the GWs
emitted in a particular logarithmic frequency bin, then (0.61) becomes

d𝜌
d(ln 𝑓 ) =

𝑅

4π𝑑2
𝐿

d𝐸
d(ln 𝑓s)

, (0.62)

where we distinguish between the observed frequency 𝑓 and the source-frame frequency 𝑓s = (1 + 𝑧) × 𝑓 .
(Note that we would pick up a factor of 1 + 𝑧 here if we were using linear frequency bins, but redshifting
does not change the size of a logarithmic bin.)

Now we go from the time-averaged contribution from a single source to the total contribution from all
sources at all redshifts. Since the signal rate𝑅 will, in general, vary over cosmological timescales, it is more
useful to think in terms of the comoving rate density R(𝑧), which is the rate of signals per unit comoving
volume. We can then encapsulate the contributions from all sources by computing a volume integral,

d𝜌
d(ln 𝑓 ) =

∫
dV R(𝑧)

4π𝑑2
𝐿
(𝑧)

d𝐸
d(ln 𝑓s)

, (0.63)

where dV is the comoving volume element, which can also be written as dV = 4π𝑟 2 d𝑧 /𝐻 (𝑧) with
𝑟 (𝑧) the comoving distance. Inserting this into equation (0.63), and using the fact that 𝑑𝐿/𝑟 = 1 + 𝑧 , we
therefore find

𝛺 ( 𝑓 ) = 1
𝜌c

∫ ∞

0

d𝑧
(1 + 𝑧)2

R(𝑧)
𝐻 (𝑧)

d𝐸
d(ln 𝑓s)

. (0.64)

This result (sometimes called the ‘Phinney formula’ [456]) allows us to calculate the expected GWB
spectrum from a cosmic population of sources. All we need to know is the energy spectrum radiated by
each source, the comoving rate density of sources, and the expansion rate of the cosmological background.
Often the first two of these three quantities will depend on some set of parameters 𝜻 describing the sources
(e.g., the masses of compact binaries), in which case the formula becomes

𝛺 ( 𝑓 ) = 1
𝜌c

∫ ∞

0

d𝑧
(1 + 𝑧)2

∫
d𝜻

R(𝑧, 𝜻 )
𝐻 (𝑧)

d𝐸 (𝜻 )
d(ln 𝑓s)

. (0.65)

0.2 .5 Stochastic search methods

As mentioned above, persistent and incoherent signals such as the GWB are arguably the most challenging
to search for, since we cannot use matched filtering, and there is no distinct arrival time to distinguish the
signal from instrumental noise. Faced with these limitations, how does one go about searching for the
GWB?

Cross-correlation searches

The most powerful approach that has been developed thus far is to conduct cross-correlation searches
between two or more detectors [69, 199, 270, 487]. The key insight here is that even if the GWB is

25In using this language, we appear to be restricting ourselves to transient signals. However, we can easily accommodate individual
sources that are persistent (e.g., spinning neutron stars) by letting 𝐸 be the total energy radiated by a persistent source in some
fixed time interval𝜏 , and setting𝑅 equal to the number of such sources divided by𝜏 .
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0.2 The gravitational-wave background

indistinguishable from noise in any individual detector, two different detectors will always ‘see’ the same
GWB signal, while ideally having statistically independent sources of noise. We can therefore use the
output of one detector as a (noisy) template for the signal we expect to see in the other detector.

More quantitatively, let us write the data stream 𝑑 (𝑡 ) in each detector as a linear sum of the GWB
strainℎ (𝑡 ) and some random noise process 𝑛 (𝑡 ). The expectation value of the cross-correlation statistic
𝑑1𝑑2 can then be written as a sum of four terms,

⟨𝑑1𝑑2⟩ = ⟨(ℎ1 + 𝑛1) (ℎ2 + 𝑛2)⟩ = ⟨ℎ1ℎ2⟩ + ⟨ℎ1𝑛2⟩ + ⟨𝑛1ℎ2⟩ + ⟨𝑛1𝑛2⟩, (0.66)

with the subscripts labelling the two detectors. We expect the second and third of these terms to vanish,
since there is no reason for the detector noise to have any coherence with the GW signal. Similarly, the
fourth term should vanish if each detector is subject to statistically-independent sources of noise.26 This
leaves just the first term, which, heuristically, is proportional to the GWB density parameter, ⟨𝑑1𝑑2⟩ =
⟨ℎ1ℎ2⟩ ∝ 𝛺 .

Of course, we don’t have observational access to ensemble-averaged quantities, only to individual
random realisations. However, since both the signal and noise are ergodic (see footnote 24), we can
approximate the ensemble average by summing over many successive measurements of the cross-correlation
statistic made at different times. As the number of measurements,𝑁𝑡 , goes to infinity, we recover exactly
the ensemble average,

lim
𝑁𝑡→∞

1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑑1(𝑡𝑖 )𝑑2(𝑡𝑖 ) = ⟨𝑑1𝑑2⟩ = ⟨ℎ1ℎ2⟩. (0.67)

Since 𝑁𝑡 is finite in practice, the cross-correlation statistic will have some random scatter around its
expectation value; this is the fundamental limitation on our ability to measure the GWB. Assuming that
the signal and the noise are both Gaussian, and that measurements at different times are independent and
identically distributed (i.i.d.), this scatter is given by

Var

[
1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑑1(𝑡𝑖 )𝑑2(𝑡𝑖 )
]
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(0.68)

26Note that this is not always the case. In particular, any pair of ground-based interferometers, no matter how widely separated,
are expected to possess some level of correlated noise due to Schumann resonances [199, 424, 544]: coherent electromagnetic
fields in the cavity between the Earth’s surface and the ionosphere that are continuously excited by lightning strikes.
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0 Introduction: the dawn of gravitational-wave astronomy

where we have used Isserlis’ theorem to rewrite the fourth moment in terms of products of second
moments. In the final line we have assumed we are in the ‘weak-signal’ regime such that |ℎ | ≪ |𝑛 |, as is
the case for essentially all GW experiments. We can then calculate a signal-to-noise ratio (SNR) for the
cross-correlation search by dividing the GWB term by the square-root of equation (0.68),

SNR ≃
√︁
𝑁𝑡

⟨ℎ1ℎ2⟩√︃〈
𝑛2

1
〉〈
𝑛2

2
〉 . (0.69)

There are two comments to make about equation (0.69). First, we see that the cross-correlated GWB
power is divided by the geometric mean of the auto-correlated noise power in each detector. In the
weak-signal regime, this factor is very small. However, since𝑁𝑡 is proportional to the total observing time
𝑇obs, we see that SNR ∝

√
𝑇obs. This is the key reason that cross-correlation searches are so useful: in

principle, any pair of detectors can eventually measure the GWB with arbitrarily large SNR, so long as we
observe for a long enough time.27

The overlap reduction function

There are many complications that we have swept under the carpet here (see Romano and Cornish [487]
for an authoritative treatment), but one which is important to highlight is the precise relationship between
the GW strain cross-correlation ⟨ℎ1ℎ2⟩ and the GW density parameter 𝛺 ( 𝑓 ). If the two detectors are
co-located, then these quantities really are proportional to each other,28

⟨ℎ1(𝑡 )ℎ2(𝑡 )⟩ =
3𝐻 2

0
4π2

∫ ∞

0

d𝑓
𝑓 3 𝛤12𝛺 ( 𝑓 ). (0.70)

Here 𝛤12 is a proportionality constant which encodes the coupling of each detector’s strain readoutℎ (𝑡 )
to the actual GW strainℎ𝑖 𝑗 (𝑡 ). Defining the detector response functions D𝐴 (𝒓 ) through the response of a
detector to each polarisation mode of a GW plane wave propagating in the 𝒓 -direction (and assuming we
are in the small-antenna limit),

ℎ (𝑡 ) ≡ D𝐴 (𝒓 )ℎ𝐴 (𝑡 , 𝒓 ), (0.71)

we find that the proportionality constant is

𝛤12 =
1

8π

∫
𝑆2

d2𝒓 D𝐴
1 (𝒓 )D𝐴

2 (𝒓 ). (0.72)

For the simplest case of two identical, equal-arm, co-located and co-aligned interferometers, this is given
by 𝛤12 = sin2 𝛽/5, where 𝛽 is the opening angle between the arms of each interferometer.

27In practice, if the noise power is too large compared to the GWB, then the requisite time might be far too long for such a
measurement to be feasible. For this reason, any time spent upgrading the sensitivity of the detector is often more than worth
the consequent loss of observing time.

28This quantity isn’t really what is measured in cross-correlation searches (which usually work with frequency-domain data 𝑑 ( 𝑓 )
instead), and even if it was, we’re missing a factor in the integrand to account for the loss of sensitivity of the instrument outside
of the small-antenna regime, where equation (0.71) breaks down. However, these details are unimportant for our purpose here,
which is to illustrate the origin of the overlap reduction function.
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Figure 0.7: Overlap reduction functions for the three detectors that make up the LIGO/Virgo network. The
factor of 5 ensures that 5 × 𝛤𝐼 𝐽 ( 𝑓 ) = 1 for two co-located, co-aligned detectors in the small-antenna limit. At
low frequencies the Hanford-Livingston ORF is approximately 5 × 𝛤HL ≈ −0.89; this is close to −1, due to
the two LIGO interferometers being nearly co-aligned up to a 90◦ rotation (there is a slight misalignment due
to the curvature of the Earth between the two detector sites, which causes |5 × 𝛤HL | to drop below unity).
Each pair of detectors has a series of ‘blind spots’ set by their separation, with longer baselines corresponding to
lower-frequency blind spots.

The issue with cross-correlating between two co-located detectors is that they both experience the same
sources of environmental noise, making it extremely difficult to ensure that ⟨𝑛1𝑛2⟩ vanishes.29 We are
therefore usually interested in cross-correlating between widely-separated pairs of interferometers such as
LIGO Hanford and LIGO Livingston, which are situated about 3000 km apart. In this case, however,
𝛤12 becomes a frequency-dependent transfer function,

𝛤12( 𝑓 ) =
1

8π

∫
𝑆2

d2𝒓 D𝐴
1 (𝒓 )D𝐴

2 (𝒓 ) cos[2π𝑓 𝒓 · (𝒙 1 − 𝒙 2)], (0.73)

called the overlap reduction function (ORF). The cosine in the integrand here means that this function is
generally smaller than the constant 𝛤12 we found for the co-located case. This is because the two detectors,
being at different locations, are generally out of phase in their response to a given plane wave, and this
phase difference causes a loss of coherence between their strain readouts. In fact, 𝛤12( 𝑓 ) usually oscillates
between positive and negative values as a function of 𝑓 , meaning that there are a series of frequencies 𝑓∗ set
by the inverse separation |𝒙 1 − 𝒙 2 |−1 where there is, on average, no coherence between the two detectors,
𝛤12( 𝑓∗) = 0 (see figure 0.7). Since we can only measure the combination 𝛤12( 𝑓 )𝛺 ( 𝑓 ), these frequencies
represent ‘blind spots’ in the search, at which it is impossible to measure 𝛺 ( 𝑓 ). (Note however that this
can be mitigated by combining multiple pairs of detectors, each with different pairwise separations and
therefore different blind spots.)

29Nonetheless, GWB searches have been conducted with co-located detectors in the past; in particular, Aasi et al. [1] carried out
such a search using two interferometers at the LIGO Hanford site, H1 and H2. (H2 has since been decommissioned.)
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Excess-power searches

What if we only have access to a single detector? In principle, we can still carry out a GWB search if we
have some prior information about the amplitude or spectral shape of the detector noise. If the measured
amplitude is greater than expected, then we can try to attribute the excess power to a GWB signal. This is
the exact method that Penzias and Wilson [453] used in their groundbreaking first detection of the CMB,
which relied on ruling out all other possible sources of noise in their radio antenna. This method is very
difficult to apply in GWB searches, however, since a detection would require us to determine the noise
spectrum of our detector with an uncertainty much smaller than ⟨ℎ2⟩. Since |ℎ | ≪ |𝑛 |, this is practically
impossible in most cases. One important exception is the future space-based interferometer LISA, for
which it will be possible to construct a null channel which is (approximately) insensitive to GWs, giving a
direct measurement of the noise power [46].

Sensitivity curves

Whether one is conducting a cross-correlation search in a network of detectors, or an excess-power search
in a single detector, the ultimate goal is to reconstruct the GWB spectrum 𝛺 ( 𝑓 ) within some frequency
band set by the sensitivity of the experiment. In both cases, however, this is often a very difficult task; for
cross-correlation searches, we have seen that the ORF generally causes ‘blind spots’ which make it difficult
to reconstruct certain frequencies, while for excess-power searches a lack of knowledge about the spectral
shape of the GWB makes it even harder to distinguish signal power from noise power. Fortunately, in
many situations the GWB spectrum is sufficiently slowly-varying across the frequency range of the search
that we can model it with a simple power law,

𝛺 ( 𝑓 ) = 𝛺𝛼 ( 𝑓 /𝑓ref )𝛼 , (0.74)

where 𝛼 is the spectral index and 𝛺𝛼 is the amplitude at some reference frequency 𝑓ref . The case 𝛼 = 0
corresponds to a scale-invariant spectrum, while 𝛼 = 3 corresponds to white noise (since ⟨ℎ2(𝑡 )⟩ then
receives equal contributions from each frequency bin; c.f. equation (0.70)). As we will see in section 0.3
below, the GWB from inspiralling compact binaries is described by 𝛼 = 2/3, while cosmic strings have
𝛼 = 0 at high frequencies, and first-order phase transitions are typically described by a broken power law
that interpolates between 𝛼 = 3 and 𝛼 = −4.

Using equation (0.74) massively reduces the complexity of the search, as we are now attempting to
infer just two parameters for the whole spectrum, rather than one free parameter for every frequency bin.
We can even reduce this further to just one parameter by assuming a particular value of 𝛼 and attempting
to infer the corresponding value of 𝛺𝛼 ; this approach forms the basis of the stochastic searches conducted
by the LIGO/Virgo/KAGRA Collaboration, which typically focus on 𝛼 = 0, 2/3, and 3. Since the GWB
has yet to be detected, this yields upper limits on 𝛺𝛼 for each of the spectral indices that are searched for.
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Figure 0.8: The power-law integrated sensitivity curve for LIGO/Virgo’s first three observing runs [32, 36] (solid
blue curve), along with the individual power-law upper limits for spectral indices 𝛼 = −10,−9, . . . ,+10 (dashed
red lines).

Taking this power-law search method to its logical conclusion, we can construct a power-law integrated
sensitivity curve (PI curve) [545] by scanning over a large set of spectral indices 𝐴 = {𝛼0, 𝛼1, . . . } and
combining the individual power-law constraints to give

𝛺PI( 𝑓 ) ≡ max
𝛼∈𝐴

𝛺𝛼 ( 𝑓 /𝑓ref )𝛼 . (0.75)

Under the assumption that the signal can be described by a power law with index 𝛼 ∈ 𝐴, this PI curve has
the property that any signal which intersects the curve, or lies tangent to it at any point, will be detected
by the search. In principle, we could imagine having a very sharply peaked signal (e.g., a delta function),
which could intersect the PI curve without being detected. In practice, however, there are few models that
predict such sharply peaked signals, and the PI curve therefore represents an extremely useful summary of
the sensitivity of a given GW experiment to the GWB.

0.3 Sources of gravitational waves

As mentioned at the beginning of this chapter, our primary goal is to use GWs (and in particular, the
GWB) as messengers, allowing us to probe exotic sources in the early and late Universe—particularly those
‘dark’ sources that are invisible to EM astronomy. In this section we give a brief introduction to a few of
these, focusing primarily on cosmological sources, whose GW emission can teach us about the structure of
the Universe on the largest scales and the fundamental laws that govern it.

We begin, however, with a quintessentially astrophysical source: compact binaries. Despite not being
cosmological in origin, these sources are still extremely important for GW cosmology, as they give rise to a
strong stochastic background; in fact, this signal is likely to be the dominant component of the GWB
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across a very broad frequency range. As we will see in chapter 1 below, compact binaries can also be used
as tracers of the cosmic matter distribution, allowing us to use anisotropies in the GWB as a novel probe
of the large-scale structure of the Universe.

There is one key class of cosmological GWs that we will not discuss here in any detail, which is the
primordial tensor spectrum that is generated during inflation through the amplification of quantum
fluctuations [293, 525]. Though these primordial GWs are of fundamental importance in modern
cosmology, and are doubtless a fascinating observational target, their spectrum is so weak at the frequencies
we are interested in (𝑓 ≳ 10−10 Hz) that they are not likely to be directly detected by GW observatories
in the foreseeable future.30 Instead, they are much more likely to be probed indirectly by future CMB
missions, through the ‘𝐵 -mode’ polarisation patterns that they imprint on the CMB [48, 358, 504].

0.3 .1 Compact binaries

We saw in section 0.1.6 that in the weak-field, slow-motion limit, GW generation is driven by the second
time derivative of the mass quadrupole of the source. In order to maximise the strength of the GW signal,
we thus require a large, high-mass system, with rapid (but non-spherically symmetric) internal velocities.
Perhaps the most efficient mechanism nature has invented for achieving this is the self-gravitating motion
of binary stars. Binaries are ubiquitous in astronomy; roughly half of solar-type stars, and a majority
of more massive stars, are in binaries or systems of higher multiplicity (triples, etc.) [245]. However, as
we show below, for the purposes of GW detection our attention is restricted to compact binaries, whose
components are not stars but dense stellar remnants such as white dwarfs (WDs), neutron stars (NSs),
and black holes (BHs).

Circular Newtonian binaries

As a first approximation, we can model a binary system as two point masses interacting via Newtonian
gravity, whose separation vector 𝑹 thus obeys

¥𝑹 + 𝐺𝑀
𝑅3 𝑹 = 0, (0.76)

where𝑀 ≡ 𝑚1 +𝑚2 is the total mass of the system. This is a good approximation when𝐺𝑀 /𝑅 ≪ 1, or
equivalently, when the orbital velocity of the binary is small, 𝑣 ≪ 1. Assuming for now that the binary is
on a circular orbit, equation (0.76) fixes the orbital period 𝑃 of the binary such that

𝐺𝑀

𝑅3 =

(
2π
𝑃

)2
. (0.77)

(The same equation holds for more general elliptical orbits if one replaces𝑅—which is no longer constant—
with 𝑎 , the semi-major axis of the ellipse; this equation is then called Kepler’s third law.) It is straightfor-

30At least, this is the case in the standard inflationary scenario of a single slowly-rolling inflaton field. For a summary of some
alternative scenarios in which the inflationary GWB is enhanced at high frequencies, see Bartolo et al. [104], as well as Iacconi
et al. [325, 326] for more recent work on this.
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Object 𝑚 𝑑 𝐺𝑚/𝑑
Solar-type star ∼ 𝑚⊙ ∼ 𝑅⊙ ∼ 10−6

White dwarf ∼ 0.6𝑚⊙ ∼ 10−2 𝑅⊙ ∼ 10−4

Neutron star ∼ 1.4𝑚⊙ ∼ 10−5 𝑅⊙ ∼ 0.2
Black hole . . . 2𝐺𝑚 1/2

Table 0.2: Typical mass, radius, and compactness of various astronomical objects. The compactness of a (nonspin-
ning) BH is always 1/2 regardless of its mass, as the Schwarzschild radius is always 2𝐺𝑚.

ward to substitute equations (0.76) and (0.77) into the GW signal we derived for a system of two point
masses (0.40), giving31

ℎ𝑖 𝑗 = −4𝐺𝜇
𝑟

𝐺𝑀

𝑅

©«
cos(4π𝑡 /𝑃 ) sin(4π𝑡 /𝑃 ) 0
sin(4π𝑡 /𝑃 ) − cos(4π𝑡 /𝑃 ) 0

0 0 0

ª®®®¬
TT

, (0.78)

where we have, without loss of generality, chosen our coordinates such that the binary is confined to the
𝑧 = 0 plane, and such that �̂� = �̂� at time 𝑡 = 0.

We see that the GWs emitted by a Newtonian binary are monochromatic, with a frequency which is
twice that of the binary’s orbital frequency,

𝑓 =
2
𝑃

=
1
π

√︂
𝐺𝑀

𝑅3 . (0.79)

One way of understanding this intuitively is to notice that after half an orbital period the angular positions
of the two binary components are interchanged, resulting in a configuration which is equivalent from the
point of view of GW production; this halving of the period corresponds to a doubling of the frequency.

We also see that equation (0.78) contains a factor of𝐺𝑀 /𝑅 as a result of Kepler’s third law. This
dimensionless factor is called the compactness of the binary, and is a measure of how strongly-gravitating
the system is. For a binary composed of objects of mass𝑚 and size 𝑑 , the compactness of the system is
bounded from above by the compactness of the objects,𝐺𝑚/𝑑 , since𝑅 ≳ 𝑑 . We therefore see that the
maximum amplitude of the signal (and thus the prospect of detection) is greatly enhanced if the binary is
composed of highly compact objects such as WDs, NSs, or BHs.32 In particular, we see from table 0.2
that the maximum strain from binary black hole (BBH) and binary neutron star (BNS) systems is about
six orders of magnitude greater than that of a binary composed of solar-type stars. This is perhaps the

31Here the time 𝑡 on the right-hand side should properly be interpreted as the retarded time 𝑡 − 𝑟 at the observer’s position.
However, if the observer is at a fixed distance from the binary (as is usually a good approximation), this distinction is unimportant,
as the two are equivalent up to a time translation.

32Of course, the weak-field, slow-motion approach we have adopted here breaks down when𝐺𝑀 /𝑅 ∼ 1, so it is not strictly
legitimate to apply equation (0.78) here. In principle, one must account for relativistic effects to say anything about this regime,
either by going to much higher order in perturbation theory (e.g. in a post-Newtonian framework), or by using numerical
simulations of full general relativity. However, in practice the simple Newtonian description of the signal is sufficient to illustrate
its most important features, once one accounts for radiation reaction as discussed below.
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simplest way of understanding why compact binaries, particularly those composed of BHs and NSs, are
the primary observational target for current and planned GW observatories.

Eliminating the binary separation 𝑅 in favour of the GW frequency 𝑓 using equation (0.79), and
projecting onto the polarisation tensors to obtain the complex strain (0.24), we can rewrite the GW signal
emitted by a Newtonian binary as

ℎ = −2𝐺M
𝑟

(π𝐺M 𝑓 )2/3 [(1 + cos2 𝜃 ) cos(2π𝑓 𝑡 − 2𝜙) + 2i cos 𝜃 sin(2π𝑓 𝑡 − 2𝜙)
]
. (0.80)

This is determined by a peculiar combination of𝑚1 and𝑚2 called the chirp mass,

M ≡ 𝜇3/5𝑀 2/5 = 𝜂3/5𝑀 =
(𝑚1𝑚2)3/5

(𝑚1 +𝑚2)1/5 . (0.81)

Here𝜂 ≡ 𝜇/𝑀 is a dimensionless quantity called the symmetric mass ratio, which varies between𝜂 = 1/4
for equal-mass binaries, and𝜂 → 0 for ‘extreme mass-ratio’ binaries in which one object is much more
massive than the other. Since𝜂 ≤ 1/4, we see that the chirp mass is always smaller than the total mass
by a factor of ≤ (1/4)3/5 ≈ 0.44; for example, GW150914 had a total mass of𝑀 ≈ 66𝑚⊙ , but a chirp
mass of only M ≈ 29𝑚⊙ . The angles (𝜃 , 𝜙) in equation (0.80) specify the observer’s line of sight with
respect to the binary reference frame used in equation (0.78); from the observer’s point of view 𝜃 is thus
interpreted as the inclination of the binary with respect to this line of sight, and we will therefore denote
it by 𝐼 . The factor π𝐺M 𝑓 that appears in equation (0.80)—which will also crop up in many of the
expressions below—is another measure of how strongly-gravitating the system is, and is related to the
compactness𝐺𝑀 /𝑟 and orbital velocity 𝑣 of the binary by (π𝐺M 𝑓 )2/3 = 𝜂2/5𝐺𝑀 /𝑅 = 𝜂2/5𝑣2.

Radiation reaction

If we believe the Newtonian result (0.78), then a binary system will continuously emit GWs at the same
fixed frequency. However, we know from section 0.1.7 that these GWs carry away energy, and there must
therefore be a corresponding loss of energy from the dynamics of the system. Inserting the complex
strain (0.80) into equation (0.43), we find that the binary loses energy at a rate

d𝐸gw

d𝑡
=

∫
𝑆2

d2𝒓

〈
|𝑟 ¤ℎ |2

〉
16π𝐺

=
32
5𝐺

(π𝐺M 𝑓 )10/3. (0.82)

Assuming a circular orbit, the binary’s orbital energy (kinetic plus potential) is

𝐸orb = −𝐺𝑀𝜇

2𝑅
= − 1

2
M(π𝐺M 𝑓 )2/3. (0.83)

Taking the time derivative of this and setting ¤𝐸orb + ¤𝐸gw = 0, we obtain

¤𝑓 =
96π

5
𝑓 2(π𝐺M 𝑓 )5/3, (0.84)
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Figure 0.9: Gravitational-wave strain signal from the final stages of a compact binary coalescence. We show the
+-polarisation (in arbitrary units) for an observer at inclination 𝐼 = 0. This waveform was generated using
the SEOBNRv4_opt approximant [143] (as implemented in the Python package PyCBC [438, 556]) for a
GW150914-like system with𝑚1 = 35.6𝑚⊙ and𝑚2 = 30.6𝑚⊙ [22].

or equivalently, in terms of the orbital period 𝑃 = 2/𝑓 ,

¤𝑃 = −192π
5

(
2π𝐺M
𝑃

)5/3
. (0.85)

We thus see that energy loss due to GW emission causes a circular binary to spiral inwards, orbiting at
an ever-increasing rate.33 It was this effect which provided the first indirect evidence for the existence
of GWs, thanks to observations of the binary pulsar B1913+16 by Hulse and Taylor [324]. We call this
process ‘radiation reaction’, in analogy with the damping force experienced by radiating charges in classical
electromagnetism [333].

Note that, while our focus here is on circular orbits, equation (0.85) is readily extended to elliptical
orbits, giving [455]

¤𝑃 = −192π
5

(
2π𝐺M
𝑃

)5/3 1 + 73
24𝑒

2 + 37
96𝑒

4

(1 − 𝑒2)7/2 , (0.86)

where 𝑒 ∈ [0, 1) is the eccentricity of the ellipse. In this case, there is also a radiation reaction effect on
the eccentricity itself due to the radiation of angular momentum [455],

¤𝑒 = −608π
15𝑃

(
2π𝐺M
𝑃

)5/3 𝑒 + 121
304𝑒

3

(1 − 𝑒2)5/2 . (0.87)

33Strictly speaking the orbit is no longer circular, since the separation𝑅 shrinks as the binary period decays. However, this process
happens on much longer timescales than that of the orbit so long as | ¤𝑃 | ≪ 1, which is equivalent to our earlier requirement that
𝐺𝑀 /𝑅 ≪ 1. We can thus think of these orbits as ‘quasi-circular’, since the separation is effectively constant over the course of a
single period.
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Since the right-hand side above is always negative, we see that GW emission causes eccentric binaries
to circularise over time, at a rate which increases drastically as the binary’s period decays. This justifies
somewhat our focus on circular binaries here; indeed all of the GW signals detected thus far by LIGO/Virgo
are consistent with zero eccentricity [33] (see however Gayathri et al. [284]).

Returning to the circular case, we see from equation (0.80) that as the binary’s period decays the
amplitude of the GW strain grows, and as a result, so does the rate at which the system loses energy (0.82).
The resulting ‘chirp’ signal, whose amplitude and frequency grow at an accelerating rate over time, is
highly distinctive (see figure 0.9), and reflects the inherent gravitational instability of binary systems.34

The runaway inspiral associated with this instability only stops once the binary’s components are so close
to each other that they merge to become a single object; to a first approximation, we expect this to happen
once the separation reaches 𝑅 = 6𝐺𝑀 , which is the radius of the innermost stable circular orbit (ISCO)
around a Schwarzschild BH of mass𝑀 . Inserting this radius into equation (0.79), we see that the merger
frequency is roughly

𝑓ISCO =
1

63/2π𝐺𝑀
≈ 63 Hz ×

(
𝑀

70𝑚⊙

)−1
. (0.88)

We can find the time taken for the binary starting at some initial frequency 𝑓0 ≪ 𝑓ISCO to reach merger
by integrating equation (0.84),

𝑡merge ≃
5𝐺M

256
(π𝐺M 𝑓0)−8/3 ≈ 4.8 s ×

(
M

30𝑚⊙

)−5/3 (
𝑓0

10 Hz

)−8/3
. (0.89)

The resulting merger product is initially highly excited, and undergoes a period of further GW emission
before settling down to a quiescent state. If the final object is a BH (as is always the case for BBHs, and
also occurs for sufficiently massive BNSs [92]), this post-merger emission is described by a superposition
of damped sinusoids at a fixed set of quasi-normal mode (QNM) frequencies determined by the structure
of the BH spacetime; the resulting signal is called the ‘ringdown’. The overall inspiral-merger-ringdown
process is called a compact binary coalescence (CBC).

Frequency spectrum and the stochastic background

So far our discussion has been purely in the time domain, where the evolution of the binary is clearer.
However, it is often more convenient to work in the frequency domain, particularly when studying
stochastic backgrounds. In general, deriving the frequency-domain GW signal from a binary is rather
involved, as we must account for both the rapid phase oscillations in the signal and the more gradual
increase in the orbital frequency when taking the Fourier transform. Fortunately, for quasicircular
Newtonian binaries in the quadrupole approximation there is a simple trick we can use to obtain the
frequency spectrum of the radiated GW energy [486]. Taking advantage of the fact that the GW signal in

34 We can understand this instability from a thermodynamical point of view. Equation (0.83) implies that a decrease in the energy
of the system corresponds to an increase in its ‘temperature’ (whether this is defined in terms of the energy radiated by the system
or in terms of the velocities of its components). The system therefore has a negative heat capacity, meaning that it is unable
to reach equilibrium, and is thus inherently unstable. This behaviour is not restricted to binaries, but is a generic feature of
finite-size self-gravitating systems, including galaxies [125] and black holes [574].
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this approximation is emitted at a single frequency which can be written as a function of time, 𝑓 (𝑡 ), by
integrating equation (0.84), we write the GW energy spectrum as

d𝐸gw

d(ln 𝑓 ) =
𝑓

¤𝑓
d𝐸gw

d𝑡
=

1
3
M(π𝐺M 𝑓 )2/3 =

1
3
𝜂𝑀𝑣2. (0.90)

This agrees exactly with what one finds from a more careful analysis, using the stationary-phase approxim-
ation to evaluate the Fourier transform of the strain [406]. Note that this expression is identical to the
orbital energy (0.83) up to an O(1) constant; this tells us that GW emission is highly efficient in extracting
energy from the orbit. Indeed, if we integrate equation (0.90) up to the ISCO frequency, we find that the
total energy radiated is 𝐸gw = 𝜇/12, or just over 2% of the total rest-mass of the system for equal-mass
binaries. (In comparison, the equivalent fraction for Hydrogen burning in stars is roughly 0.7%.) In
reality, the true fraction is even higher due to radiation emitted in the merger-ringdown phase.

Inserting equation (0.90) into the Phinney formula (0.64), we see that the GWB signal from a cosmic
population of CBCs has a characteristic ∼ 𝑓 2/3 spectral slope, the amplitude of which is determined by
the CBC rate density and mass distribution. Note however that this ∼ 𝑓 2/3 power law does not continue
indefinitely; since the spectrum in equation (0.90) is truncated when the two objects merge around
the ISCO frequency (0.88), the GWB spectrum will gradually reach a peak and then drop off at higher
frequencies, as fewer and fewer CBCs contribute.

Ignoring this for now, we can combine equations (0.90) and (0.64) to find

𝛺 ( 𝑓 ) = 8𝑓 2/3

9𝐻 2
0

∫ ∞

0

d𝑧
(1 + 𝑧)4/3

R(𝑧)
𝐻 (𝑧)

∫
dM 𝑝 (M|𝑧) (π𝐺M)5/3, (0.91)

where𝑝 (M|𝑧) is the chirp mass distribution as a function of redshift. We can obtain a crude, order-of-
magnitude estimate for the GWB from CBCs by setting the redshift integral equal to the value of its
integrand at redshift zero. For the LIGO/Virgo frequency band, this gives

𝛺 ( 𝑓 ) ∼ 10−9 ×
(

𝑓

100 Hz

)2/3 ( ⟨M⟩
30𝑚⊙

)5/3 R0

10 Gpc−3 yr−1
, (0.92)

where ⟨M⟩ is the mean chirp mass (which we have normalised to the chirp mass of GW150914) and
R0 is the BBH merger rate at 𝑧 = 0 (which we have normalised to the value reported in Abbott et al.
[22]). This simple estimate is actually remarkably close to the answer we find from a much more detailed
calculation in chapter 1.

0.3 .2 First-order phase transitions

We now turn to look at GWs of cosmological origin. Although we have yet to detect GWs from any source
other than CBCs, the rise of GW astronomy has prompted many cosmologists and particle theorists to
investigate mechanisms for producing GWs in the early Universe. Few such possibilities have excited the
interest of the community as much as cosmological first-order phase transitions, which present an extremely
promising way to search for new physics beyond the Standard Model [169, 170, 172, 359].
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Figure 0.10: The thermal effective potential (0.93) for a scalar field 𝜙 that undergoes a first-order phase transition.
The field is initially localised around𝜙 = 0, which is a stable vacuum state at high temperatures. As the Universe
cools below a critical temperature 𝑇c due to cosmic expansion, 𝜙 = 0 becomes a metastable false vacuum,
separated from the true vacuum by a potential barrier.

The basic picture is as follows: at some high-temperature epoch in the early Universe, we have a scalar
field 𝜙 whose dynamics are described by a thermal effective potential of the form [317]

ℏ3𝑉𝑇 (𝜙) ≃ 𝐴 (𝑇 2 −𝑇 2
0 )𝜙2 − 𝐵𝑇𝜙3 +𝐶𝜙4, (0.93)

where 𝐴, 𝐵 , and𝐶 are dimensionless constants,𝑇 is the temperature of the Universe, and𝑇0 is some
fixed energy scale. (Recall that we use units with 𝑘B = 1 but ℏ ≠ 1. The factor of ℏ3 here ensures that
the potential has dimensions of mass per unit volume, while𝑇 and 𝜙 both have dimensions of mass.)
For example, 𝜙 could be the Higgs field, in which case𝑇0 is related to the Higgs mass, and the values of
𝐴, 𝐵,𝐶 are set by the Higgs’ couplings to other particles. As the Universe expands and cools,𝑇 decreases,
changing the shape of the potential and therefore the dynamics of the scalar field. At zero temperature
and at very high temperatures, there is a discrete Z2 symmetry under 𝜙 → −𝜙 .

For appropriate values of 𝐴, 𝐵,𝐶 , the potential exhibits the behaviour shown in figure 0.10 where,
as well as possessing a local minimum at 𝜙 = 0 at high temperatures, a second minimum develops at
some 𝜙 > 0 once the temperature falls below a certain threshold. As the Universe continues to cool, it
passes a critical temperature𝑇c where this point becomes a global minimum, and it becomes energetically
favourable for the field to fall into this state and acquire a nonzero vacuum expectation value (VEV),
𝑣 ≡ ⟨𝜙⟩ > 0. We call this state the broken phase, as it breaks the 𝜙 → −𝜙 symmetry, in contrast with the
symmetric phase at 𝜙 = 0.

For a broad class of values of 𝐴, 𝐵,𝐶 , the potential has a barrier between 𝜙 = 0 and 𝜙 = 𝑣 at
temperatures𝑇 ≲ 𝑇c, which prevents the field from straightforwardly rolling down into the broken phase.
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The symmetric phase thus becomes a metastable false vacuum (as opposed to the true vacuum at the
bottom of the potential well) which can persist for some time after the critical temperature is reached.
Eventually, however, the field escapes this metastable state, either through thermal fluctuations ‘over the
barrier’, or through quantum tunnelling ‘under the barrier’. These random decay events occur at localised
points in spacetime, resulting in the nucleation of ‘bubbles’ of true vacuum which then expand outwards
at relativistic velocities and collide with each other until the entire Universe has transitioned to the broken
phase. This process is called a first-order phase transition (FOPT).

While we have motivated this discussion in terms of a Higgs-like scalar field𝜙 , it turns out that the masses
and couplings of the heaviest particles in the Standard Model are such that the Higgs potential does not
have a barrier, and instead of a FOPT there is a simple cross-over transition which occurs homogeneously
throughout the Universe in thermal equilibrium [356]. However, in alternative particle physics models
which couple new fields to the Higgs, or which have new Higgs-like scalar fields, the potential generically
acquires a barrier between the symmetric and broken phases, meaning that FOPTs are a very generic
consequence of such modifications. As such, any detection of a FOPT in the early Universe would be
incredibly exciting, as it would provide compelling evidence for physics beyond the Standard Model.

GW astronomy provides the most promising means of making such a detection. This is because false
vacuum decay represents a violent and highly energetic departure from equilibrium in the early-Universe
plasma, with the resulting dynamics of the matter fields leading to copious production of GWs. Modelling
the resulting GWB signal is a considerable theoretical and numerical challenge, and is currently a very
active area of research. However, the general picture is that there are three key processes that contribute
to the GWB [172]:

1. the dynamics of the scalar field during collisions of true-vacuum bubbles;

2. the bulk motion of the plasma due to sound waves;

3. the chaotic motion of the plasma due to MHD turbulence.

While all three of these mechanisms depend in a complicated way on the details of the underlying
particle physics model, the sound-wave contribution dominates the combined GWB spectrum in most
cases. This contribution is usually modelled as a broken power law,

𝛺 ( 𝑓 ) = 𝛺 ( 𝑓∗) × ( 𝑓 /𝑓∗)3
[

7
4 + 3( 𝑓 /𝑓∗)2

]7/2
, (0.94)

which grows like ∼ 𝑓 3 at low frequencies and falls off as ∼ 𝑓 −4 at high frequencies. The changeover
between these two regimes occurs at a peak frequency [172, 501]

𝑓∗ ≈ 19 μHz × 𝑇∗
100 GeV

𝛽/𝐻∗
𝑣w

( 𝑔∗
106.75

)1/6
, (0.95)

which depends on a few key parameters describing the phase transition: 𝑇∗, the temperature at which
the transition takes place (which we have normalised here relative to the electroweak scale); 𝛽 , the inverse
duration of the transition (normalised to the Hubble rate at the transition epoch,𝐻∗); and𝑣w, the velocity
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of the bubble walls. (Here 𝑔∗ is the number of relativistic degrees of freedom in the plasma, which we
have normalised to the value it takes in the Standard Model at early times.) The peak amplitude of the
spectrum is approximated by

𝛺 ( 𝑓∗) ≈ 5.7 × 10−6 × 𝑣w

𝛽/𝐻∗

( 𝜅𝛼
1 + 𝛼

)2 ( 𝑔∗
106.75

)−1/3 [
1 − (1 + 2𝜏sw𝐻∗)−1/2

]
, (0.96)

where 𝛼 is the energy density released by the transition, in units of the energy density of the plasma at that
epoch; 𝜅 is an efficiency parameter determined by 𝛼 and 𝑣w; and 𝜏sw is the lifetime of the sound-wave
source, which is a function of 𝛼, 𝛽 , and 𝑣w.

We can understand the strongly-peaked nature of this spectrum as being a consequence of the transient
nature of the FOPT source: the GW production is centred around a single epoch in the Universe’s history
(set by the transition temperature𝑇∗), and as a result this imprints a characteristic frequency scale 𝑓∗ on the
spectrum. This makes it very challenging to probe the entire FOPT parameter space (𝑇∗, 𝛼, 𝛽/𝐻∗, 𝑣w),
as it is possible for the peak of the spectrum to lie between the sensitive frequency bands of various GW
experiments. We will revisit this problem in chapter 3, and show how the novel GW detection method we
develop there can be used to probe a unique region of the FOPT parameter space.

0.3 .3 Cosmic strings

Consider now what happens if we replace the real scalar field 𝜙 of the previous section with a complex
scalar field, whose effective potential at low temperatures𝑇 ≪ 𝑇c is given by

ℏ3𝑉 (𝜙) ≃ 𝐶 ( |𝜙 |2 − 𝑣2)2, (0.97)

which is minimised by setting |𝜙 | = 𝑣 . (This is the same potential as equation (0.93) at𝑇 ≪ 𝑇0, up to a
constant shift.) Rather than having two disconnected vacua at 𝜙 = ±𝑣 related by a broken Z2 symmetry,
we now have a connected circle of vacua at 𝜙 = ei𝜗𝑣 that are related by a broken𝑈 (1) symmetry, as
illustrated in figure 0.11; we label each of these vacua by a phase angle 𝜗 .

As the Universe cools, different spatial regions decay from the symmetric phase 𝜙 = 0 to a different,
randomly-selected point on the vacuum circle, resulting in a phase 𝜗 that is a smoothly-varying field
on spacetime. This process generically gives rise to configurations such as the one shown in figure 0.12,
where 𝜗 executes a nonzero winding around the vacuum circle. As we approach the centre of such a
configuration, we see that it is impossible for the scalar field𝜙 to reside in any of the vacua without causing
a discontinuity; 𝜙 is therefore forced into the higher-energy symmetric phase at this point. Topologically,
it is impossible to have 𝜙 = 0 at just this single isolated point. Instead, we necessarily obtain a linelike
object of nonzero energy density by stacking many of these points together, as illustrated in figure 0.12.
We call this object a cosmic string [316, 371, 565, 567]. As with FOPTs, cosmic strings do not occur in
the Standard Model, but are a generic consequence of many high-energy modifications to the Standard
Model [341], and are therefore an extremely well-motivated means of searching for new physics in the
early Universe.
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Figure 0.11: Effective potential for the complex scalar field 𝜙 . At high temperatures (left panel), this is simply
∼ |𝜙 |2𝑇 2, and the symmetric phase 𝜙 = 0 is the unique vacuum state. At low temperatures (right panel), the
potential transitions to the form in equation (0.97); the symmetric phase then becomes unstable, and the field
decays into one of a continuous family of vacua given by |𝜙 | = 𝑣 .

Once formed, cosmic strings are protected from decay by the topological stability of the underlying
field configuration. This stability is much more robust than the metastability of the false vacuum state we
encountered in the previous section, which was vulnerable to decay via any single point in space tunnelling
to the true vacuum. Due to the continuity of the phase angle 𝜗 throughout space, it is impossible to
‘unwind’ the scalar field at any single point along the string: one would have to perform this unwinding
simultaneously everywhere along the entire length of the string. The probability of the field tunnelling to
such a globally unwound configuration is vanishingly small. As a result, cosmic strings can survive over
cosmological timescales, acting as relics of their early formation epoch that we can, in principle, observe at
late times.

We can understand the importance of cosmic strings as GW sources by estimating the amount of
mass/energy they carry per unit length. To calculate this, we need to know (𝑖 ) the energy density 𝜌 of the
scalar field near the core of the string, and (𝑖 𝑖 ) the characteristic width 𝛿 of the string, i.e., the lengthscale
over which𝜙 decays from the symmetric phase to one of the vacuum states as we travel away from the core
of the string. We can then approximate the linear mass density, 𝜇, as the product of the cross-sectional
area of the string and the energy density in its core,

𝜇 ≈ π𝛿 2 × 𝜌. (0.98)

It is natural to interpret 𝜌 as the difference in the potential (0.97) between the symmetric phase and the
broken phase, which gives us 𝜌 =𝑉 (0) −𝑉 (𝑣 ) ∼ ℏ−3𝑣4. For the string width 𝛿 , we notice that since the
scalar field VEV, 𝑣 , is the only dimensionful quantity in equation (0.97), the only lengthscale that we can
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construct is the associated Compton wavelength, 𝛿 ∼ ℏ/𝑣 . Neglecting O(1) constants, we therefore find
that the linear density must be

𝐺𝜇 ∼ (𝑣/𝑚Pl)2, (0.99)

which we have made dimensionless by normalising relative to the Planckian linear density 𝑚Pl/ℓPl =

𝑚2
Pl/ℏ = 1/𝐺 . Equivalently, this means we can write the string width 𝛿 as

𝛿 ∼
√︁
ℏ/𝜇 = ℓPl/

√︁
𝐺𝜇. (0.100)

As with any string, the linear density 𝜇 is related to the string tension, T , and the propagation speed of
waves along the string,𝑢 , by the equation 𝜇 = T/𝑢2. As we will see in chapter 2, the motion of cosmic
strings can be written as a relativistic wave equation with𝑢 = 1, so this equation tells us we are free to
interchange their tension and linear density. We therefore refer to𝐺𝜇 as the (dimensionless) string tension
of a cosmic string.

Equation (0.99) shows that strings formed at early epochs in the Universe’s history will have enormous
string tensions compared to objects from our everyday experience. For example, a string formed at the
grand unified theory (GUT) scale, 𝑣 ∼ 1013 TeV ∼ 10−3𝑚Pl, would have a dimensionless string tension
of𝐺𝜇 ∼ 10−6. (Compare this with, e.g., a steel guitar string, which has𝐺𝜇 ≈ 5 × 10−30.) This means
that a GUT-scale string spanning the size of the Earth’s orbit around the Sun would have a mass of
𝜇 × AU ∼ 100𝑚⊙ , far greater than the total mass of the Solar System. Such objects would clearly exert
considerable gravitational influence over their surroundings. The fact that they also oscillate at relativistic
velocities tells us that cosmic strings must be incredibly powerful sources of GWs.

Since cosmic strings are topologically forbidden from having endpoints, they are forced to form either
closed loops [372, 554] or open-ended ‘long’ strings (also called ‘infinite’ strings) which stretch across an
entire Hubble volume. Any given Hubble patch will typically have O(1) long strings passing through
it [567], which are formed at the epoch of the symmetry-breaking phase transition. These long strings are
free to oscillate on sub-horizon scales, and generically intersect themselves to chop off closed loops, which
produce copious GWs and decay to smaller sizes by trading their length for radiated energy (since their
linear density 𝜇 is a constant fixed by the underlying field theory, any loss of energy necessarily translates
into a decay in the loop’s size). This process (combined with loop-loop intersections which also chop off
smaller loops) causes a downwards cascade, eventually filling the Hubble patch with a network of loops
with a continuous spectrum of sizes, through which the energy in the long strings is gradually dissipated
into GWs [113].

Since loop production persists over cosmological timescales, the GW emission from the loop network
accumulates over time to give a strong GWB spectrum [87]. Unlike the peaked spectrum (0.94) we saw
in the FOPT case, which encoded the single epoch of GW production, this collective emission from
cosmic strings of all sizes and at all epochs leads to a GWB which is flat over a very broad frequency band
(although this plateau is usually also accompanied by a peak at lower frequencies). As a result, cosmic
strings allow us to probe much higher energy scales than those accessible with FOPT signals. For example,
the GWB from a FOPT occurring at the GUT scale would peak at 𝑓 ∼ 1010 Hz, far beyond the sensitive
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Figure 0.12: Configuration of the complex scalar field 𝜙 on three spatial slices intersecting a cosmic string (shown
in blue). The colour and direction of the arrows at each point on these slices indicate the phase angle 𝜗 of the
vacuum state at that point in space. If we travel around a closed spatial loop that encloses the string, we find that
this phase has a nonzero winding number 𝑛 around the vacuum circle, 𝜗 → 𝜗 + 2π𝑛.
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frequencies of current or future GW experiments, while the signal from a cosmic string network formed
at that epoch would be observable at much lower frequencies.

GW searches for cosmic strings with LIGO/Virgo [4, 18, 24, 36, 37] and pulsar timing arrays [131,
388, 593] have so far returned only null results, allowing us to place a conservative upper limit on the
string tension of 𝐺𝜇 ≲ 10−11 (there is some uncertainty due to the modelling of the cosmic string
loop network—the most stringent constraints are at the level of𝐺𝜇 ≲ 10−15 [37]). These constraints
are orders of magnitude better than those derived from CMB observations, which are of the order
𝐺𝜇 ≲ 10−7 [47, 355, 419].

In chapter 2 we will describe the GW emission from loops in more detail, focusing on three key emission
mechanisms called cusps, kinks, and kink-kink collisions. We will derive, for the first time, the nonlinear
GW memory (0.47) associated with these mechanisms, and will show that this has surprising implications
for the gravitational dynamics of cusps.

0.3 .4 Primordial black holes

We saw in section 0.3.1 that compact binaries, and binary black holes in particular, are vitally important
sources of GWs. Previously, we characterised these sources as astrophysical rather than cosmological, as
the main formation channel for BHs and NSs is thought to be through the gravitational collapse of stars
that have exhausted their nuclear fuel. However, it is also possible that BHs may have formed through
cosmological processes in the early Universe, meaning that the BBH signals observed by LIGO/Virgo
could be a hint of something much more exotic. Efforts to understand the formation and observational
signatures of these primordial black holes (PBHs) [180, 181, 303, 596] have formed a major strand of
research in cosmology for the past fifty years.

While there are various ways of producing PBHs in the early Universe that have been studied in the
literature, the most well-established mechanism is the gravitational collapse of horizon-sized density
perturbations. Since a given Hubble patch must be significantly more massive than average to undergo
such a collapse, this mechanism requires the production of very large overdensities during inflation, e.g.,
due to a phase transition between two distinct inflationary phases [279], or the presence of a feature in the
inflationary potential [332]. These large perturbations are ‘frozen out’ by the inflationary expansion, and
only become dynamical again and collapse once they re-enter the horizon during the radiation-dominated
era. We can estimate the masses of the resulting PBHs by noticing that, since they correspond to the
collapse of an entire Hubble patch, their Schwarzschild radius 2𝐺𝑚pbh should be of the same order of
magnitude as the particle horizon at the time of horizon re-entry. In a radiation-dominated Universe this
is given by 𝑟hor = 2𝑡age, where 𝑡age is the age of the Universe at that epoch. We therefore have the rough
estimate

𝑚pbh ∼
𝑡age

𝐺
∼ 𝑚Pl ×

(
𝑡age

𝑡Pl

)
∼ 106 𝑚⊙ ×

(
𝑡age

10 s

)
. (0.101)

This shows that the masses of horizon-collapse PBHs can span an enormous range of physical scales,
from tiny Planckian objects formed in the Universe’s earliest moments, all the way up to supermassive
BHs comparable to those residing at the centres of galaxies, formed shortly before the epoch of big-bang
nucleosynthesis. PBHs that are sufficiently massive can produce detectable GW signals at late times by
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Figure 0.13: Current observational bounds on the PBH mass spectrum. Very light PBHs (𝑚pbh ≲ 10−16 𝑚⊙) are
constrained by the non-observation of high-energy particles (e.g. gamma rays) emitted during evaporation [150,
182, 204, 205, 235, 373, 386, 463], while very massive PBHs (𝑚pbh ≳ 10𝑚⊙) are constrained by the sensitivity
of the CMB anisotropies to PBH accretion at the epoch of recombination [505]. PBHs at intermediate masses
(10−11 𝑚⊙ ≲ 𝑚pbh ≲ 100𝑚⊙) are constrained by stellar microlensing experiments such as OGLE [437],
EROS [546], and Subaru-HSC [220], and by the BBH event rate observed by LIGO/Virgo [26, 365]. PBHs in
the ‘sublunar’ mass range (10−16 𝑚⊙ ≲ 𝑚pbh ≲ 10−12 𝑚⊙) could account for the entirety of the Universe’s
CDM budget. This figure was produced using the Python package PBH-bounds [291, 364].

forming compact binaries [126, 206, 231, 467, 468, 497, 498], as described in section 0.3.1. They can
also produce a powerful GWB signal during the collapse process itself, with the dynamics of the large
scalar overdensities leading to the generation of sizeable tensor perturbations [74].

One of the most exciting features of equation (0.101) is that it provides a mechanism for producing BHs
with masses less than that of the Sun,𝑚pbh < 𝑚⊙ , which is impossible to achieve through the standard
astrophysical process of stellar collapse. This means that any detection of a subsolar-mass BH, whether
through GWs or otherwise, would provide powerful evidence for PBH formation in the early Universe,
and could substantially advance our understanding of inflation and other areas of fundamental physics.
Aside from their masses, PBHs may also possess other features which could help to distinguish them from
astrophysical BHs. For example, the radiation-era formation process described above is expected to lead to
the PBHs having negligibly small spins, due to the angular momentum of the collapsing region being
dissipated by radiation pressure during the collapse; this is in contrast with astrophysical BHs, which can
have quite sizeable spins due to angular momentum conservation during their collapse.
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As we go towards lower end of the mass range predicted by equation (0.101), it becomes increasingly
important to treat the PBHs as quantum-mechanical objects. By considering the behaviour of quantum
fields on BH spacetimes, Hawking [305] famously showed that BHs emit thermal blackbody radiation
with a temperature35 𝑇BH = ℏ/(8π𝐺𝑚), causing them to radiate away their mass and evaporate on a
timescale [304, 442, 443]

𝑡evap ∼ 𝑡Pl ×
(
𝑚

𝑚Pl

)3
. (0.102)

As a result, PBHs with masses less than

𝑚∗ ≈ 3 × 1019𝑚Pl ≈ 5 × 1011 kg ≈ 3 × 10−19 𝑚⊙ (0.103)

are expected to have evaporated completely in the time since their formation. Equation (0.103) therefore
provides a lower bound on the masses of PBHs surviving to the present day.

As we mentioned near the beginning of this chapter, non-evaporating PBHs are interesting not just
as GW sources, but also as a very well-motivated candidate for dark matter [178, 188]. Since they are
massive, nonbaryonic, have nonrelativistic velocities, and interact only through gravity, PBHs fulfil all
of the properties that we require for a DM particle. For this reason, constraints on their cosmological
abundance are usually phrased in terms of their CDM mass fraction,

𝑓 (𝑚) ≡ 1
𝜌cdm

d𝜌pbh

d(ln𝑚) =
𝑚2𝑛pbh(𝑚)

𝜌cdm
, (0.104)

which tells us how much of the observed CDM mass density in the Universe is made up of PBHs of mass𝑚.
(We will also refer to this quantity as the PBH mass spectrum.) Here 𝜌pbh and𝑛pbh are the PBH mass density
and number density respectively, while 𝜌cdm ≈ 0.261 𝜌c ≈ 30𝑚⊙ kpc−3 (c.f. table 0.1). To successfully
account for the entirety of the DM, a given PBH formation scenario must give

∫
d(ln𝑚) 𝑓 (𝑚) = 1;

however, consistency with various observational probes places upper bounds on 𝑓 (𝑚) over a broad range
of masses, as shown in figure 0.13.

We will encounter PBHs again in chapter 2, in which we investigate the possibility of them being
formed through the gravitational collapse of cusps on cosmic string loops.

0.4 Gravitational-wave detection:
basic principles and current results

Having familiarised ourselves with a few important sources of gravitational waves in section 0.3, the
obvious question now is: how do we go about detecting these signals?

35Strictly speaking, this expression is only correct for Schwarzschild BHs. For Kerr BHs one must multiply this by a factor of
2
√︁

1 − 𝜒2/(1 +
√︁

1 − 𝜒2), where 𝜒 ≡ 𝐽/(𝐺𝑚2) ∈ [0, 1] is the BH’s dimensionless spin.
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The key idea is to use the results of section 0.1.5, in which we found that the passage of a GW causes an
oscillation in the proper distance between two freely-falling test masses. In particular, this results in an
oscillation in the light-travel time𝑇 between the two masses [259],

δ𝑇 =
1
2

∫ 𝑇

0
d𝑡 �̂� 𝑖 �̂� 𝑗ℎ𝑖 𝑗 (𝑡 , 𝒙 (𝑡 )), (0.105)

with �̂� the propagation direction of the light pulse. If one knows the expected arrival time of the pulse
with sufficient accuracy, then searching for offsets from this expected arrival time allows us to probe the
GW strain ℎ𝑖 𝑗 . The two leading methods for GW detection, laser interferometry and pulsar timing, are
both fundamentally based on this principle, each using different pairs of objects as test masses and different
means of calibrating the expected arrival time. We give a brief overview of each of these methods and
their current observational results in sections 0.4.1 and 0.4.2 respectively. We then describe a completely
different class of indirect cosmological bounds in section 0.4.3, before briefly touching on a variety of
other GW searches in section 0.4.4.

0.4 .1 Laser interferometers

One approach to extracting the perturbations (0.105) in the round-trip time of a light pulse is to use
an interferometer (IFO), sending two laser pulses of the same wavelength along different paths through
space before recombining them and measuring their relative phase. The power of this method is that it
removes the need to calibrate the light travel time along each path; instead, we can perform a differential
measurement between the two paths. If each path is affected differently by the passage of a GW, then this
results in a perturbation to the relative phase. For example, suppose we use a beam-splitter to send half of
our laser photons along the �̂� -axis and the other half along the �̂� -axis, each being reflected by a test mass
and returning to the origin. The resulting differential signal is then

𝑇𝑥 (𝑡 ) −𝑇𝑦 (𝑡 ) =
1
2

∫ 𝑇

0
d𝑡 (𝑥 𝑖𝑥 𝑗 − 𝑦 𝑖𝑦 𝑗 )ℎ𝑖 𝑗 (𝑡 , 𝒙 (𝑡 )) ≃

𝑇

2
(𝑥 𝑖𝑥 𝑗 − 𝑦 𝑖𝑦 𝑗 )ℎ𝑖 𝑗 (𝑡 ,0), (0.106)

where in the second equality we have taken the small-antenna limit in which the arms of the IFO are
much smaller than the wavelength of the GW.

In order to measure this signal, we require the test masses at the ends of each arm of the IFO to be free to
move along the axis of the corresponding arm, so that their response to an incoming GW corresponds to
that of a freely-falling object along that axis. However, this freedom means that there are countless sources
of instrumental noise that can shake the test masses and therefore generate a phase difference (0.106),
limiting the sensitivity to GW signals. The two key sources of noise for ground-based IFOs are seismic
noise at low frequencies and photon shot noise in the laser at high frequencies [406, 500]; as a result, the
best sensitivity comes at a ‘sweet spot’ between these two noise floors at about 10–1000 Hz.

Several ground-based IFOs have been used to conduct GW searches since this idea was first proposed by
Weiss [587] in 1972. Of these, by far the most successful to date are the Laser Interferometer Gravitational-
Wave Observatory [2, 302] (LIGO, which consists of two instruments in Hanford, Washington and
Livingston, Louisiana, USA), and its European counterpart Virgo [44] (which is a single instrument in
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Cascina, Italy). These three IFOs, operating together as a global GW observatory network, have jointly
detected dozens of CBC signals [22, 33, 40], primarily from BBHs, but also including several BNSs and,
more recently, two systems which have been interpreted as black hole-neutron star binaries (BHNS) [39].
These detections have revealed fascinating insights into the population properties of BHs and NSs in the
local Universe [35], and have been used to perform stringent new tests of GR [6, 34, 594]. They have
also included a number of ‘exceptional events’ with unexpected properties [28–31] that challenge our
understanding of the astrophysical formation channels for these systems.

Aside from their success in detecting CBCs, LIGO/Virgo have also conducted some of the most
sensitive GWB searches of any experiment to date [8, 24, 36]. In figure 0.14 we show the PI curve from
LIGO/Virgo’s third observing run, which reaches a maximum sensitivity of 𝛺 ( 𝑓 ) ≈ 7.5 × 10−9 at
𝑓 ≈ 38 Hz for an isotropic background [36]. LIGO/Virgo have also carried out searches for anisotropic
backgrounds [9, 25, 38], backgrounds with non-GR polarisation modes [19, 166], and modelled searches
for the GWB from cosmic strings [18, 37].

Looking to the future, the recent addition of the Japanese IFO KAGRA [27, 61] and the future
addition of LIGO India [555] will extend the capabilities of the GW observatory network, while planned
upgrades to the existing instruments will further enhance their sensitivity. This network is expected to
detect the GWB signal from compact binaries once LIGO and Virgo reach their design sensitivities [17].
By that time, we can expect to have detected many more individual CBC signals, which in turn will give us
a much firmer understanding of the expected amplitude and spectral shape of the stochastic CBC signal.

By the late 2030s, these experiments will likely be replaced by so-called ‘third generation’ IFOs such
as Einstein Telescope (ET) [464] and Cosmic Explorer (CE) [295, 472]. These observatories will be
so sensitive that their BBH detection horizons will reach all the way out to the earliest epochs of star
formation at 𝑧 ≈ 20 and beyond [407] (the BNS and BHNS detection horizons are at later epochs,
due to the lower masses of these systems), allowing them to individually resolve more than 99.9% of all
BBH signals in the Universe [471] (assuming that they are not primordial in origin), as well as enormous
numbers of BNS and BHNS signals. As a result, it might not even make sense to talk about a stochastic
CBC signal for ET and CE; instead, the goal will likely be to coherently model and subtract the majority of
individual CBCs, and to use stochastic methods to search for cosmological GWs beneath this astrophysical
foreground [471, 491, 513].

By this time, we also expect to have data from the first space-based GW observatory, the Laser Interfero-
meter Space Antenna (LISA) [73]. Freed from the seismic noise that limits the sensitivity of ground-based
IFOs below ∼ 10 Hz, LISA will be able to search for GWs at much lower frequencies, with a sensitivity
peaking in the mHz regime. This will allow LISA probe a completely different population of CBCs,
with masses much greater than those of the stellar-mass binaries detected by LIGO/Virgo. (Recall that
CBC signals are truncated around the ISCO frequency (0.88), so that binaries with masses greater than
∼ 200𝑚⊙ merge below the LIGO/Virgo frequency band.) In particular, these more massive sources
are expected to include extreme mass-ratio inspirals (EMRIs) [72, 89] in which a stellar-mass object
orbits a supermassive black hole (SMBH) with mass ≳ 106 𝑚⊙ , as well as supermassive binary black holes
(SMBBHs) [376] that are expected to form when two galaxies merge. LISA will also prove incredibly
useful in searching for cosmological signals, probing cosmic strings with tensions of𝐺𝜇 ≳ 10−17 [87],
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Figure 0.14: An overview of current and future observational bounds on the stochastic gravitational-wave back-
ground. Solid curves indicate existing results from the LIGO/Virgo/KAGRA Collaboration (LVK) [36], pulsar
timing by the Parkes PTA [388], CMB+BBN constraints from𝑁eff [441], gravimeter monitoring of the Earth’s
normal modes [217], and Doppler tracking of the Cassini spacecraft [82]. Dashed curves indicate forecast
bounds from Einstein Telescope (ET) [464], LISA [73], the Square Kilometre Array (SKA) [339], and the
proposed km-scale atom interferometer AION [91], as well as improved𝑁eff constraints [441]. Dot-dashed
curves show various potential GWB signals. The light blue curve shows the expected spectrum from stellar-mass
CBCs (based on our current knowledge of the cosmic BBH, BNS, and BHNS populations), which we discuss
in chapter 1. The grey curve shows an example spectrum from Nambu-Goto cosmic string loops (using ‘model
2’ of the loop network, with string tension𝐺𝜇 = 10−11), which we discuss in chapter 2. The yellow curves
show two first-order phase transition (FOPT) spectra at temperatures𝑇∗ = 2 GeV and 200 GeV, peaking at
𝑓 ≈ 1 μHz and ≈ 100 μHz respectively. The pink dotted curves indicate a range of possible signals associated
with the common process (CP) detected by NANOGrav [86], while the overlaid dot-dashed curve shows the
median inferred amplitude for the NANOGrav CP when assuming a 𝛺 ∼ 𝑓 2/3 spectrum, as expected for
inspiralling supermassive binary black holes (SMBBHs).

and first-order phase transitions at temperatures𝑇∗ ∼ 1 GeV–103 TeV [169, 172] (note that this includes
transitions at the electroweak scale ∼ 200 GeV, which are particularly well-motivated from the point of
view of particle physics models).

0.4 .2 Pulsar timing

The other main GW detection technique that has been explored to date relies on millisecond pulsars [90,
397]: highly-spinning neutron stars that emit strong beams of EM radiation (particularly radio emission)
from their magnetic poles. Since these beams are usually misaligned with the pulsar’s rotation axis, the
EM emission acts like the beam of a lighthouse, only reaching the Earth once per spin period. Pulsar
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Figure 0.15: The Hellings-Downs function (blue curve) for cross-correlation GWB searches as a function of the
angle 𝜃𝐼 𝐽 between the two pulsars. The red point emphasises that the signal power is doubled for auto-correlation
(i.e., excess power) searches with individual pulsars.

spin periods are incredibly stable over time, and in many cases have been measured to within one part per
trillion, allowing us to predict with very high precision the times of arrival (ToAs) of subsequent pulses.
Subtracting this ‘timing formula’ from the observed ToAs then gives us a set of timing residuals that
directly measure the GW-induced perturbations to the light-travel time between the pulsar and the Earth.
These residuals are subject to noise in the radio antenna (which causes a certain level of uncertainty in the
reconstruction of each pulse, and therefore in determining the ToA), as well as some level of intrinsic noise
in the pulse profiles and emission times from each pulsar, the nature of which is not yet fully understood.

We saw in section 0.2.5 that the strongest GWB searches typically come from cross-correlating data
between multiple detectors. In the context of pulsar timing, this corresponds to measuring the ToAs
of multiple pulsars and cross-correlating the timing residuals between them [237]. Such an experiment
is called a pulsar timing array (PTA). The ORF in this case has a simple analytical expression, and is
proportional to the Hellings-Downs curve [311],

𝜒(𝜃𝐼 𝐽 ) ≡
1 + 𝛿𝐼 𝐽

2
− 1 − cos 𝜃𝐼 𝐽

2

[
1
4
− 3

2
ln

(
1 − cos 𝜃𝐼 𝐽

2

)]
, (0.107)

with 𝐼 and 𝐽 labelling different pulsars in the array. This depends only on the angle 𝜃𝐼 𝐽 between the two
pulsars on the sky, and is maximised for pulsars in the same sky direction, 𝜃𝐼 𝐽 = 0 (see figure 0.15). It is
also possible to perform excess-power searches for each individual pulsar in the array by looking at the
auto-correlation of their timing residuals; we see from the Kronecker delta term in equation (0.107) that
this auto-correlation signal is a factor of two stronger than the cross-correlation signal for two different
pulsars at the same sky location, 𝜃𝐼 𝐽 = 0, as a single set of timing residuals is guaranteed to be perfectly in
phase with itself.
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In equation (0.106), we used the small-antenna approximation to simplify the phase difference meas-
ured by an IFO. One important difference between IFOs and PTAs is that the latter are never in the
small-antenna regime. Since the distances to known pulsars are on the order of 𝑑 ∼ 0.1–100 kpc, this
regime would correspond to frequencies much lower than 1/𝑑 ∼ 10−10–10−13 Hz; but GWs with these
frequencies would cause much less than a single oscillation in the timing residuals over observational
timescales, making them extremely challenging to measure. Essentially, the issue is that the light-travel
time across the ‘detector’ is much longer than the observation time. PTAs are therefore forced to measure
GWs with frequencies 𝑓 ≫ 1/𝑑 , which undergo many oscillations during the light-travel time from the
pulsar to the Earth, causing the total GW perturbation (0.105) to average to a smaller value. As a result,
PTAs are most sensitive at the lower end of their frequency band, giving a sharp PI curve which grows
like ∼ 𝑓 5 [545] (see figure 0.14). This curve is truncated at a minimum frequency corresponding to the
inverse of the total observation time, 𝑓min = 1/𝑇obs, which for decade-long pulsar timing campaigns can
reach below a few nHz. The key observational target in this frequency band is the GWB from inspiralling
SMBBHs [336], which has a characteristic ∼ 𝑓 2/3 spectrum, just like the GWB from stellar-mass CBCs
in the LIGO/Virgo band. However, PTAs have also proven extremely useful in probing cosmological
GW sources—particularly cosmic strings [131], whose GWB spectrum typically contains a peak around
this frequency range.

There are three key PTAs currently operating, all of which have been taking data for more than a
decade: the Parkes Pulsar Timing Array (PPTA) [318], the European Pulsar Timing Array (EPTA) [380],
and the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) [420]. As
well as conducting independent GW searches, these three collaborations also perform joint analyses
as the International Pulsar Timing Array (IPTA) [409]. The strongest reported upper limit on the
nHz GWB comes from a 2015 PPTA analysis, setting 𝛺 ( 𝑓 ) < 2.3 × 10−10 at a reference frequency
of 𝑓 = yr−1 ≈ 32 nHz [388, 512] (see figure 0.14). However, NANOGrav have recently claimed a
detection of excess power in the auto-correlation spectra of their timing residuals, with an amplitude and
spectral shape that is consistent across all of the pulsars in the array [86]. This ‘common process’ signal
is completely consistent with what one would expect from a GWB, leading several authors to explore
how a spectrum with this amplitude and spectral tilt could be generated by various exotic cosmological
GW sources [123, 135, 141, 158, 232, 254, 384, 435, 469, 558, 561] (though the spectrum is also perfectly
consistent with the GWB from SMBBHs [425]). Consistent findings have very recently been reported by
PPTA and EPTA in a re-analysis of their data [190, 288], as well as in a joint analysis by the IPTA [76].

Confirming the NANOGrav common process signal as being due to the GWB will require a detection
of the corresponding cross-correlation signal; if the measured cross-correlation spectra are consistent with
the distinctive shape of the Hellings-Downs curve as a function of the inter-pulsar angle 𝜃𝐼 𝐽 , then this will
provide extremely strong evidence for GWs. We know from equation (0.107) that the cross-correlation
signal is a factor of two smaller than the auto-correlation signal detected by NANOGrav, meaning that
the present situation is unsurprising, and also that the cross-correlation signal will likely be within reach
once NANOGrav have collected a few more years of data. We have therefore reached a very exciting point
in the development of GW astronomy, where NANOGrav and other PTAs appear to be on the brink of
making the first-ever detection of the GWB. If this signal is genuine, then future PTA observations such
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as those planned for the Square Kilometre Array (SKA) [339] will detect it with extremely large SNR,
allowing highly detailed reconstruction of the GWB spectrum in the nHz band.

0.4 .3 Cosmological bounds

We saw in section 0.2.3 that the energy density of GWs in the Universe can be thought of in the same
terms as the other key components of the cosmic energy inventory: matter, radiation, and dark energy. In
fact, since GWs redshift in exactly the same way as photons and other relativistic particles, the GW density
parameter 𝛺gw( 𝑓 ) should really be treated as just one part of the total radiation density, in much the same
way that CDM and baryons each contribute to the total matter density. This radiation density parameter
is crucially important for early-Universe physics, as it determines the expansion rate of the Universe at
redshifts 𝑧 ≳ 3400. As a result, if the GW energy density 𝛺gw( 𝑓 ) is large enough at early times, it can
contribute significantly to the Hubble rate, and thereby leave an imprint on early-Universe observables
such as the light element abundances predicted by big-bang nucleosynthesis (BBN), and the temperature
and polarisation anisotropies of the CMB [405]. Of course, this only holds for primordial GWs that were
already present at these early epochs, such as those from FOPTs; astrophysical sources have no impact on
these probes, and even some cosmological sources do not contribute (e.g. the GWs emitted by cosmic
string loops or PBH binaries at later times).

The resulting constraints are usually phrased in terms of the effective number of neutrino species,
𝑁eff , which is a key model parameter for both BBN and the CMB. Since neutrinos have extremely small
masses, they are relativistic at these early epochs, and therefore redshift in the same way as photons and
GWs. BBN and CMB analyses typically do not account for the GW energy density, meaning that a
given GWB spectrum 𝛺gw( 𝑓 ) is effectively absorbed into the measured value of 𝑁eff , giving an extra
contribution [405] relative to the Standard Model prediction of𝑁 (SM)

eff ≈ 3.045 [496],

𝑁eff −𝑁 (SM)
eff =

16
7𝛺𝛾

[
𝑔𝑆 (𝑇∗)
𝑔𝑆 (𝑇0)

]4/3 ∫ ∞

ln 𝑓∗
d(ln 𝑓 ) 𝛺gw( 𝑓 ) ≈ 2.50 × 105

∫ ∞

ln 𝑓∗
d(ln 𝑓 ) 𝛺gw( 𝑓 ). (0.108)

Here 𝛺𝛾 ≈ 5.43 × 10−5 is the present-day photon density, and 𝑔𝑆 (𝑇 ) is the number of entropic degrees
of freedom in the Universe as a function of photon temperature𝑇 , with𝑇∗ and𝑇0 the temperatures at
the relevant early-Universe epoch and at the present day, respectively.

We see from equation (0.108) that, rather than constraining the GWB spectrum in a certain frequency
band like the IFOs and PTAs we have discussed above,𝑁eff measurements constrain the integrated GW
energy density across a very broad frequency range. (This range is cut off at a minimum frequency
𝑓∗ ≈ 10−15 Hz corresponding to the horizon size at the epoch of BBN, since super-horizon GWs are
non-dynamical and thus do not contribute to the GW energy density.) As a result, if we were to detect
the GWB through its contribution to𝑁eff , we would have no information about its frequency content,
making it extremely difficult to infer the source of the signal. In fact, it would be very difficult to attribute
such a detection to the GWB in the first place, as there are numerous other mechanisms for changing the
value of𝑁eff (e.g., by adding further relativistic particle species to the Standard Model).

Despite these caveats,𝑁eff measurements still provide very useful constraints on the GWB. The most
up-to-date analysis, which combines the Planck 2015 temperature and polarisation angular power spectra
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with information from BBN Deuterium abundances, CMB lensing, and baryon acoustic oscillation
(BAO) data, gives [441] ∫ ∞

ln 𝑓∗
d(ln 𝑓 ) 𝛺gw( 𝑓 ) < 2.6 × 10−6, (0.109)

Forecasts by the same authors predict this bound will improve to 1.7 × 10−7 with future CMB and
BAO measurements by COrE and EUCLID. Both bounds are shown in figure 0.14, along with the PI
curves from various IFOs and PTAs, and the predicted GWB spectra from a variety of astrophysical and
cosmological sources.

There are several other cosmological constraints on the GWB that we do not mention here, primarily
coming from CMB observations (e.g. through searches for 𝐵 -mode polarisation patterns [48, 358, 504],
or GW-induced spectral distortions [375]). However,𝑁eff measurements provide the only cosmological
constraint on GWs at the frequencies 𝑓 ≳ 10−10 Hz that we are interested in, which is why we have
focused on them here.

0.4 .4 Other searches

There are many GW experiments that we have omitted from the discussion above. In this section we very
briefly highlight a few that are of particular interest, all of which are shown in figure 0.14.

The oldest method of GW detection, pioneered by Weber [582, 583] in the 1960s with his ‘resonant
bar’ experiments, is to monitor the resonant frequencies of some macroscopic test object. When acted
upon by a GW with a frequency matching one of the object’s normal modes, the stretching and squeezing
action they induce excites vibrations in these modes which can be amplified and detected. Numerous
such resonant-mass experiments have been operated since the 1960s [56], but none has had sufficient
sensitivity to place meaningful bounds on the GWB below the 𝛺 ( 𝑓 ) < 1 level required to prevent GWs
from over-closing the Universe. However, the same idea has been applied with success on a much larger
scale, using the Earth itself as a resonant mass. By monitoring the Earth’s normal mode frequencies using
gravimeter data, Coughlin and Harms [217] placed an upper limit on the GWB in the mHz frequency
band. The corresponding PI curve has a minimum of 𝛺 ( 𝑓 ) ≈ 1.3 × 10−2 at 𝑓 ≈ 1.6 mHz. Recently, a
trio of similar experiments have been proposed in which gravimeters installed on the Lunar surface could
be used to monitor the Moon’s normal modes, providing a cleaner probe of GWs in the mHz frequency
band [301, 338, 363].

Another GW experiment which has successfully constrained the GWB below the 𝛺 ( 𝑓 ) < 1 level is the
work of Armstrong et al. [82], who carried out Doppler-tracking observations of the Cassini spacecraft.
The principle here is more similar to IFOs and PTAs in that it tracks the trajectories of photons in the
presence of GWs; however, rather than measuring changes in the light-travel time, one attempts to measure
changes in the photon frequency due to GW-induced Doppler shifts between the two test masses (this is
essentially the time derivative of the perturbation to the light-travel time). This analysis probed GWs in
the 1–100 μHz band, with the corresponding PI curve reaching a minimum of 𝛺 ( 𝑓 ) ≈ 9.9 × 10−3 at
𝑓 ≈ 3.9 μHz.

Finally, a GW detection technique which is subject to growing interest in the community is atom
interferometry, in which, rather than using interference between photons to measure the phase difference
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between two spatial paths, one exploits the wavelike behaviour of matter on the quantum scale to measure
interference between atoms. While first-generation atom interferometry experiments such as AION [91]
and MAGIS [43, 290] are in their early stages and are not expected to have significant sensitivity to GWs,
proposals for future km-scale experiments are forecast to provide extremely useful GWB constraints in
the 0.1–1 Hz band. In particular, the AION-km proposal has a forecast sensitivity of 𝛺 ( 𝑓 ) ≈ 2.7× 10−12

at 𝑓 ≈ 0.12 Hz.
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1 Anisotropies in the
gravitational-wave background

In section 0.2 we introduced the gravitational-wave background, and argued that, by giving us access to
physics at high redshift, this provides one of our most powerful tools for probing cosmology with GW
observations. We also discussed the standard set of statistical assumptions that are usually made about the
GWB: that it has no phase correlations between different sky directions, and that it is Gaussian, stationary,
unpolarised, and isotropic. This last assumption, however, is particularly restrictive and unrealistic in the
context of the inhomogeneous Universe we inhabit, with its beautiful and fascinating array of structures
on a vast range of scales. In order to put the GWB on an equal footing with other cosmological observables,
we must treat it as anisotropic (though for extragalactic sources it is still statistically isotropic—see section 1.1
below).

Aside from providing a more faithful description of reality, one of the key motivations for treating the
GWB as anisotropic is the information content of the anisotropies, which is generally complementary
to that of the isotropic component. As we saw with the ‘Phinney formula’ (0.64) in section 0.2.4, the
isotropic GWB spectrum encodes the average rate, number density, and energy spectra of GW sources in
the Universe, as well as the isotropic expansion rate of the FLRW background. Meanwhile, the anisotropies,
as well as depending on all of these ingredients, also encode the spatial clustering of GW sources, and
the inhomogeneities in the spacetime metric that the GWs encounter as they propagate towards us. This
situation is entirely analogous to other cosmological observables such as the CMB: while the isotropic
component (i.e., the mean CMB temperature𝑇0 ≈ 2.73 K) is sensitive to the expansion history of the
homogeneous background, the anisotropies reveal a treasure trove of information about the origins and
dynamical evolution of perturbations in the Universe’s matter content and spacetime metric.

Of course, given the historical headstart electromagnetic astronomy has had relative to GW astronomy,
the observational status of EM probes such as the CMB is vastly more advanced than that of the GWB. As
emphasised by Romano [486], it took half a century for CMB observations to progress from Penzias and
Wilson’s initial discovery of the isotropic component to the exquisitely detailed maps of the anisotropies
provided by Planck, whereas in 2021 we’re yet to even detect the isotropic component of the GWB. It
therefore seems unlikely that studies of the GWB anisotropies will be able to compete with EM probes any
time soon in terms of, say, constraining the values of cosmological parameters like the Hubble constant.
So why study GWB anisotropies?

The key motivation for GWB searches, in my view, lies in their discovery potential. While EM observables
each probe a known set of sources described by well-understood physics, the GWB has the potential to
unveil previously-unknown sources across an enormous redshift range, thereby giving us the opportunity
to probe exotic new physics. The sources we discussed in section 0.3—first-order phase transitions,
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cosmic strings, and primordial black holes—are just a few of the most prominent possibilities studied in
the literature, any of which would revolutionise our understanding of fundamental physics if detected.
Studying the anisotropies associated with each of these GWB signals will likely be crucial in distinguishing
and characterising the underlying sources, enabling us to extract as much cosmological information as
possible from our GW data. Another key motivation is that searches for GWB anisotropies are already
underway, with LIGO/Virgo in particular providing impressively strong directional upper limits on
the GWB intensity [9, 25, 38]. As these searches become increasingly sensitive, it is important for us to
understand what they should expect to see, so that the results can be properly interpreted.

For these reasons, there has been a recent surge of interest in modelling the expected spectrum of
anisotropies in the GWB [62, 100–103, 117, 174, 209, 210, 221–225, 285, 342, 345, 346, 349, 382, 392,
457, 559, 578], and their cross-correlations with EM observables [50, 153, 221, 224, 312, 408, 481], as well
as in developing associated data analysis techniques [57, 65, 66, 70, 71, 95, 212, 320, 344, 423, 444, 474–
476, 478, 532, 533, 592]. While this body of work has included studies of the anisotropies associated
with inflation [62, 102, 103], FOPTs [285, 382], cosmic strings [345, 383, 439], and PBHs [101, 578], the
primary focus has been on the astrophysical GW background (AGWB) from compact binary coalescences.
As I see it, there are three key reasons why this signal is interesting:

1. Since the black holes and neutron stars that give rise to the AGWB are created via stellar evolution,
we expect them to reside in galaxies and other star-forming environments. As a result, these CBCs
act as tracers of the inhomogeneous distribution of galaxies, and therefore of the cosmic matter
distribution. By studying the statistical clustering of this background signal on the sky, we can
therefore probe the large-scale structure of the Universe at late times, and gain insights into the
nonlinear gravitational dynamics that governs these structures. While this LSS is already being
measured by late-Universe EM observations such as galaxy surveys, there are several features of
GWB searches which might allow us to access new and complementary information compared to
these existing probes: namely that they automatically include the full sky and extend to arbitrarily
high redshifts (in contrast with galaxy surveys, which typically cover only a fraction of the sky, and
are inevitably limited in their depth), as well as using a different population of tracers of the matter
distribution (i.e., CBC-hosting galaxies), whose clustering properties will, in general, differ from
those used by existing cosmological probes.

2. Aside from providing novel cosmological information, the GWB from CBCs also has the potential
to reveal interesting astrophysical information, principally about the rates and masses of CBCs and
how these evolve throughout cosmic history. This could help us answer some of the many open
questions about these systems; for example, what fraction of them originate from isolated binary
evolution, and what fraction are dynamically assembled in dense stellar environments [485]? Are
there other important formation channels, e.g., in AGN discs [106]? What are the mass distribu-
tions of BHs and NSs, and how do these depend on the stellar physics of their progenitors [287]?
What are the properties of the host galaxies of these CBCs [49], and how do these impact the
CBCs themselves? While individually-resolved CBCs can help us try to pin down these questions
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at low redshifts, the properties of the AGWB and its anisotropies could help us paint a much more
complete picture, covering the full history of star formation in the Universe.

3. Perhaps most importantly of all, the AGWB is likely to be the loudest stochastic signal across a
broad range of frequencies, and is therefore likely to the first component of the GWB that we
detect. In order to dig out the cosmological signals which may be lurking beneath it, and thereby
exploit the GWB to its full potential, we are thus obliged to understand the AGWB as thoroughly
as possible, including a complete characterisation of its anisotropies.

With these motivations in mind, the goal of this chapter is to investigate the anisotropies in the AGWB,
focusing on the background from stellar-mass CBCs that is the target of ground-based interferometers
such as LIGO/Virgo. We begin in section 1.1 by introducing some of the necessary tools for studying
the GWB as a random field on the sphere; this is almost entirely a review of pre-existing results, though
the presentation is somewhat different to that which one usually encounters in the GWB literature. In
section 1.2 we calculate predictions for the AGWB spectrum, starting with the isotropic component,
before constructing a simulated map of the AGWB’s anisotropies using data from the Millennium𝑁 -
body simulation. In section 1.3 we examine the issue of shot noise as an obstacle for AGWB searches,
deriving the expected amplitude of this noise, before developing an optimal statistical methodology for
mitigating its impact on measurements of the angular power spectrum. We summarise our results in
section 1.4, and discuss some of the ways forward for future studies of GWB anisotropies.

1 .1 Characterising the anisotropic background

In section 0.2.2, we saw that the plane wave components of the GWB strain, ℎ̃𝐴 ( 𝑓 , 𝒓 ), must be treated
as random variables due to our ignorance of their incoherent phases, and that under the standard set of
assumptions the statistics of these components are fully characterised by a single function of frequency.
In section 0.2.3, we identified this function with the GW density parameter 𝛺 ( 𝑓 ). Motivated by the
discussion above, we now relax the assumption of perfect isotropy, so that the GWB strain moments
become〈

ℎ̃𝐴 ( 𝑓 , 𝒓 )
〉
= 0,

〈
ℎ̃𝐴 ( 𝑓 , 𝒓 )ℎ̃∗

𝐴′ ( 𝑓
′, 𝒓 ′)

〉
=

3π𝐻 2
0

(2π| 𝑓 |)3𝛺 ( 𝑓 , 𝒓 )𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (𝒓 , 𝒓 ′), (1.1)

where we have promoted the GWB intensity to a field on the 2-sphere,

𝛺 ( 𝑓 , 𝒓 ) ≡ 1
𝜌c

d𝜌gw

d(ln 𝑓 ) d2𝒓
. (1.2)

This has units of inverse steradians, and when integrated gives the isotropic GWB spectrum from before,

𝛺 ( 𝑓 ) =
∫
𝑆2

d2𝒓 𝛺 ( 𝑓 , 𝒓 ). (1.3)
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1 .1 .1 The gravitational-wave background as a random field

Previously, we treated 𝛺 ( 𝑓 ) as a deterministic (i.e., non-random) quantity, fixed by the average properties
of the cosmic population of GW sources. However, when studying the distribution of GW intensity
on the sky, 𝛺 ( 𝑓 , 𝒓 ), we are faced once again with a fundamental degree of uncertainty, similar to our
ignorance about the phases of the strain components ℎ̃𝐴 ( 𝑓 , 𝒓 ). In this case, the uncertainty is due to
our lack of knowledge about the angular positions of individual GW sources on the sky. For example,
while we can attempt to deterministically model the average rate of CBC signals that contribute to the
GWB, there is no hope of modelling where on the sky these signals should come from without a complete
knowledge of the positions of all the BBHs and BNSs in the Universe. We are therefore forced to treat
𝛺 ( 𝑓 , 𝒓 ) itself as essentially random.1

Of course, the above argument doesn’t hold for GW sources which inhabit a preferred set of directions
on the sky. For example, the stochastic signal from white dwarf binaries that will be observed by LISA
will come primarily from the galactic plane, and it should therefore be possible to model the angular
distribution of this signal using the known distribution of stars within the galaxy. However, we are
interested here in extragalactic sources, for which there are no preferred directions. (Or at least, if there
are preferred directions, these depend on information we do not have access to, such as the locations of
CBCs throughout the Universe.) We therefore assume that the GWB is statistically isotropic, such that all
ensemble-averaged functions of 𝛺 ( 𝑓 , 𝒓 ) are invariant under sky rotations. In particular, this implies that
the mean of the GWB intensity field is independent of direction, and that the covariance between any
two field points depends only on the invariant angle between those points,

⟨𝛺 ( 𝑓 , 𝒓 )⟩ ≡ �̄� ( 𝑓 ), Cov[𝛺 ( 𝑓 , 𝒓 ), 𝛺 ( 𝑓 , 𝒓 ′)] ≡ 𝐶 ( 𝑓 , 𝒓 · 𝒓 ′). (1.4)

If the GWB is a Gaussian random field, then these two moments are sufficient to fully describe its statistics.
Note that we haven’t written down the most general covariance function here, which would specify

what happens when we cross-correlate two different frequencies, 𝑓 and 𝑓 ′, as well as two different sky
directions. In fact, this is not necessary, since we generally expect that it is possible to factorise the GWB
into a frequency spectrum (which is deterministic) and an angular intensity map (which is a random
field),

𝛺 ( 𝑓 , 𝒓 ) = H( 𝑓 )𝛺 (𝒓 ). (1.5)

To see why this might be a reasonable assumption, it is useful to focus for a moment on the AGWB
in the LIGO/Virgo frequency band. In this case, the frequency spectrum encodes the characteristic
∼ 𝑓 2/3 emission of each of the individual CBCs as they ‘chirp’ up and approach merger, while the angular
intensity encodes the distribution of CBCs throughout the Universe. Since each CBC spans the entire
frequency range of interest while it is in-band, there is no distinction between the angular distribution
of ‘high-frequency CBCs’ and ‘low-frequency CBCs’—they are just the same sources, with the same
distribution on the sky, and we can therefore capture this distribution by factorising out the frequency

1Note that we now have two distinct levels of randomness in the GWB strain: the randomness of the incoherent phases, and the
randomness of the intensity as a function of sky direction. It is important to stress that these are two logically distinct sources of
randomness, with the former being tied to the random GW emission times of different sources in the Universe, and the latter
tied to the spatial clustering of those sources due to LSS. We will return to this point in section 1.3.5.
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spectrum as in equation (1.5).2 We therefore suppress the frequency arguments in equation (1.4), and
focus on the angular intensity 𝛺 (𝒓 ) at some reference frequency.

1 .1 .2 Spherical harmonics

The statistical invariance of the GWB under rotations means that it’s not actually very useful to think
about 𝛺 as a function of sky direction, since its value at any given direction 𝒓 is entirely dependent on our
arbitrary choice of spherical coordinates. This is exactly the same reason why it’s not useful to describe
the GWB strain in the time domain, as statistical time-translation invariance (i.e., stationarity) means that
specifying the value of the strain at any given time 𝑡 is not very informative. Instead, we treat the strain
in the frequency domain, projectingℎ𝐴 (𝑡 , 𝒓 ) onto the Fourier modes e2πi𝑓 𝑡 , which provide a complete
and orthogonal set of basis functions on the real line R. Stationarity then means that the phases of the
Fourier components ℎ̃𝐴 ( 𝑓 , 𝒓 ) are uninformative, but their amplitudes are useful, allowing us to describe
the statistics of the GWB strain over different timescales (i.e., different frequencies) in terms of the power
spectrum (which is proportional to 𝛺 ( 𝑓 , 𝒓 )). Ideally we would like to do something analogous here,
projecting 𝛺 (𝒓 ) onto some set of basis functions on the sphere 𝑆2, and thereby describing the statistics
of the field on different angular scales.

The obvious candidate for these basis functions is the set of spherical harmonics𝑌ℓ𝑚 (see figure 1.1),
which are defined as solutions to the equation [∇2 + ℓ (ℓ + 1)]𝑔 (𝒓 ) = 0, where ℓ is any non-negative
integer. Note that this is analogous to the equation (∂2

𝑡 + 𝜔2)𝑔 (𝑡 ) = 0 obeyed by the Fourier modes
ei𝜔𝑡 , with ℓ here playing the rôle of ‘angular frequency’. One important difference that comes with the
higher dimensionality is an increase in the number of independent solutions of the same frequency: for
any given ℓ there are 2ℓ + 1 linearly independent harmonics 𝑌ℓ𝑚 (𝒓 ), which we label with the index
𝑚 ∈ {−ℓ,−ℓ + 1, . . . ,+ℓ} such that |𝑚 | ≤ ℓ. These form a complete basis on the 2-sphere 𝑆2, and are
orthonormal, ∫

𝑆2
d2𝒓 𝑌ℓ𝑚 (𝒓 )𝑌 ∗

ℓ′𝑚′ (𝒓 ) = 𝛿ℓℓ′𝛿𝑚𝑚′. (1.6)

The first few spherical harmonics are

𝑌00(𝒓 ) =
√︂

1
4π
,

𝑌10(𝒓 ) =
√︂

3
4π

cos 𝜃 , 𝑌11(𝒓 ) = −
√︂

3
8π

sin 𝜃ei𝜙 ,

𝑌20(𝒓 ) =
√︂

5
16π

(3 cos2 −1), 𝑌21(𝒓 ) = −
√︂

15
8π

sin 𝜃 cos 𝜃ei𝜙 , 𝑌22(𝒓 ) =
√︂

15
32π

sin2 𝜃e2i𝜙 ,

(1.7)

with the expressions for negative values of𝑚 given by the identity

𝑌 ∗
ℓ𝑚 (𝒓 ) = (−)𝑚𝑌ℓ,−𝑚 (𝒓 ). (1.8)

2This argument does not hold in all settings. For example, many of the CBCs that will be observed by LISA will undergo negligible
frequency evolution over observational timescales (c.f. equation (0.89)), meaning that there is then a distinction between the
CBC populations emitting at different frequencies, and this could in principle lead to interesting frequency-dependent effects in
the two-point statistics of the GWB. We do not investigate this further here.
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Figure 1.1: Visualisations of the real parts of the first few spherical harmonics, Re{𝑌ℓ𝑚 (𝒓 )}, for multipoles ℓ ≤ 4.
The polar axis (𝜃 = 0,π) is oriented vertically.

We therefore decompose the GWB intensity into spherical harmonics,

𝛺ℓ𝑚 ≡
∫
𝑆2

d2𝒓 𝑌 ∗
ℓ𝑚 (𝒓 )𝛺 (𝒓 ), (1.9)

allowing us to replace a real random field 𝛺 : 𝑆2 → Rwith an infinite set of complex random numbers
𝛺ℓ𝑚 ∈ C, which we call the spherical harmonic components (SHCs) of the field. Note that the fact that
𝛺 (𝒓 ) is real, combined with equation (1.8), implies that𝛺∗

ℓ𝑚
= (−)𝑚𝛺ℓ,−𝑚 . We can invert equation (1.9)

to write
𝛺 (𝒓 ) =

∑︁
ℓ𝑚

𝑌ℓ𝑚 (𝒓 )𝛺ℓ𝑚 , (1.10)

where we use the shorthand notation
∑
ℓ𝑚 ≡ ∑∞

ℓ=0
∑+ℓ
𝑚=−ℓ for brevity. Equations (1.9) and (1.10) are the

spherical analogues of the Fourier transform and its inverse. One important difference with frequency
spectra on R is that the spherical harmonic spectrum (1.9) is discrete rather than continuous, which we
can understand as a consequence of 𝑆2 being compact (i.e., having finite volume).

1 .1 .3 The angular power spectrum

Now that we have decomposed the GWB into spherical harmonics, we would like to replace the field
moments in equation (1.4) with the first and second moments of the SHCs, writing these in terms of the
constant �̄� and the function𝐶 (𝒓 · 𝒓 ′). We can obtain the first moment pretty much immediately by
writing

⟨𝛺ℓ𝑚⟩ = �̄�

∫
𝑆2

d2𝒓 𝑌 ∗
ℓ𝑚 (𝒓 ) =

√
4π�̄�𝛿ℓ0𝛿𝑚0, (1.11)

where in the second equality we have used the orthonormality condition (1.6) with the ℓ = 𝑚 = 0
harmonic from equation (1.7). This tells us that all of the SHCs have zero mean, except for the monopole
𝛺00.
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For the second moment, it is useful to note that since the dot product 𝒓 · 𝒓 ′ always lies in the interval
[−1, 1], the function𝐶 (𝒓 · 𝒓 ′) can be decomposed into Legendre polynomials 𝑃ℓ (𝒓 · 𝒓 ′), which form a
complete basis for functions on this interval. We therefore write

𝐶 (𝒓 · 𝒓 ′) ≡
∞∑︁
ℓ=0

2ℓ + 1
4π

𝐶ℓ𝑃ℓ (𝒓 · 𝒓 ′), (1.12)

where the coefficients𝐶ℓ are a set of real numbers describing the decomposition of the covariance function
in this basis, and the normalisation factor (2ℓ + 1)/(4π) is chosen such that we can write the inverse
expression as

𝐶ℓ =

∫
𝑆2

d2𝒓 ′𝑃ℓ (𝒓 · 𝒓 ′)𝐶 (𝒓 · 𝒓 ′), (1.13)

using the orthogonality relation for the Legendre polynomials,
∫ +1
−1 d𝑥 𝑃ℓ (𝑥)𝑃ℓ′ (𝑥) = 2𝛿ℓℓ′/(2ℓ + 1).

The Legendre polynomials are related to the spherical harmonics of the same angular scale ℓ by the
addition theorem [247]

𝑃ℓ (𝒓 · 𝒓 ′) =
+ℓ∑︁

𝑚=−ℓ

4π
2ℓ + 1

𝑌ℓ𝑚 (𝒓 )𝑌 ∗
ℓ𝑚 (𝒓 ′), (1.14)

which allows us to write equation (1.12) as

𝐶 (𝒓 · 𝒓 ′) =
∑︁
ℓ𝑚

𝐶ℓ𝑌ℓ𝑚 (𝒓 )𝑌ℓ𝑚 (𝒓 ′). (1.15)

We can now derive the second moment of the SHCs,3

Cov[𝛺ℓ𝑚 , 𝛺ℓ′𝑚′] =
∫
𝑆2

d2𝒓

∫
𝑆2

d2𝒓 ′𝑌ℓ𝑚 (𝒓 )𝑌 ∗
ℓ′𝑚′ (𝒓 ′)𝐶 (𝒓 · 𝒓 ′)

=
∑︁
𝐿𝑀

𝐶𝐿

[∫
𝑆2

d2𝒓 𝑌ℓ𝑚 (𝒓 )𝑌 ∗
𝐿𝑀 (𝒓 )

] [∫
𝑆2

d2𝒓 ′𝑌 ∗
ℓ′𝑚′ (𝒓 ′)𝑌𝐿𝑀 (𝒓 ′)

]
=

∑︁
𝐿𝑀

𝐶𝐿𝛿ℓ𝐿𝛿𝑚𝑀 𝛿ℓ′𝐿𝛿𝑚′𝑀 = 𝐶ℓ𝛿ℓℓ′𝛿𝑚𝑚′,

(1.16)

which shows us that the SHCs 𝛺ℓ𝑚 are all uncorrelated from each other (which, if they are Gaussian,
further implies that they are statistically independent). This illustrates the usefulness of going to spherical
harmonic space, since having a diagonal covariance matrix like equation (1.16) is extremely convenient for
both theory and data analysis. Compare with the covariance matrix in field space (also called ‘pixel space’,
since in practice the sky is usually partitioned into a finite number of pixels), C𝑖 𝑗 ≡ 𝐶 (𝒓 𝑖 · 𝒓 𝑗 ), in which
the off-diagonal terms are generically nonzero (otherwise the field would have no spatial correlations at all),
making it much more cumbersome to work with. Again, the analogy with Fourier analysis is clear: one of
the key strengths of working in Fourier space is that modes of different frequency are usually uncorrelated,
giving a diagonal covariance matrix.

3Note that here, and throughout, we define the covariance of two complex random variables with a complex conjugate on the
second argument, i.e., Cov[𝑋 ,𝑌 ] ≡ ⟨𝑋𝑌 ∗⟩ − ⟨𝑋 ⟩⟨𝑌 ∗⟩ = Cov[𝑌 , 𝑋 ]∗. This ensures that the variance is always real, since
Var[𝑋 ] ≡ Cov[𝑋 , 𝑋 ] = ⟨|𝑋 |2⟩ − |⟨𝑋 ⟩|2.
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We have thus shown that we can replace equation (1.4) with4

⟨𝛺ℓ𝑚⟩ =
√

4π�̄�𝛿ℓ0, Cov[𝛺ℓ𝑚 , 𝛺ℓ′𝑚′] = 𝐶ℓ𝛿ℓℓ′𝛿𝑚𝑚′, (1.17)

which is analogous to equation (1.1) for the Fourier components of the GWB strain. In particular, the
set of numbers𝐶ℓ is analogous to the Fourier power spectrum; we call it the angular power spectrum.
One important difference is that the monopole 𝛺00 has a nonzero mean value, as opposed to the Fourier
components, which are all zero-mean. This is because, while we can set the mean value of the strain
⟨ℎ𝑖 𝑗 (𝑡 )⟩ to zero by a coordinate transformation, the mean GWB intensity �̄� must always be positive—
otherwise there would be no GWB to observe.

Intuitively, the angular power spectrum𝐶ℓ tells us about the amplitude of statistical fluctuations in the
intensity field on angular scales 𝜃 ∼ π/ℓ. We can make this notion more precise by using equation (1.12)
to write the variance of a single field point 𝒓 as5

Var[𝛺 (𝒓 )] ≡ 𝐶 (𝒓 · 𝒓 ) =
∞∑︁
ℓ=0

2ℓ + 1
4π

𝐶ℓ ≈
∫

d(ln ℓ) ℓ (ℓ + 1)
2π

𝐶ℓ , (1.18)

where we have used the fact that 𝑃ℓ (1) = 1. The quantity ℓ (ℓ + 1)𝐶ℓ/(2π) thus approximately describes
the field variance associated with a given logarithmic bin in ℓ, and is therefore the quantity that is usually
presented in, e.g., CMB analyses, rather than the bare angular power spectrum 𝐶ℓ . Comparing with
the GWB strain once again, ℓ (ℓ + 1)𝐶ℓ/(2π) is analogous to the density parameter 𝛺 ( 𝑓 ), while𝐶ℓ is
analogous to the strain power spectrum 𝑆 ( 𝑓 ) ∼ 𝑓 −3𝛺 ( 𝑓 ). Having ℓ (ℓ + 1)𝐶ℓ = constant corresponds
to a scale-invariant angular power spectrum, while having𝐶ℓ = constant corresponds to a white spectrum.

1 .1 .4 Estimating the angular power spectrum

Suppose we detect the GWB and measure some set of SHCs, 𝛺ℓ𝑚 . What can we say about the angular
power spectrum based on these measurements? (We ignore here the problem of actually inferring the
SHCs from noisy strain data, and the associated uncertainties in their values—see, e.g., Thrane et al. [543]
or Romano and Cornish [487] for thorough treatments of these topics.)

The SHCs that we observe represent just a single random realisation from the distribution parameterised
by the angular power spectrum. As such, we cannot measure these distribution parameters directly; the
best we can do is construct some function of the observed SHCs whose ensemble-averaged value is related
to the parameters we’re interested in. We call such a function an estimator. If the ensemble average of the
estimator is equal to the parameter we’re trying to infer, then we call it unbiased.

4Here we replace 𝛿ℓ0𝛿𝑚0 with just 𝛿ℓ0. We can always do this, since having ℓ = 0 necessarily implies that𝑚 = 0, in order to
satisfy |𝑚 | ≤ ℓ.

5At first glance, it seems like there should be a factor of ℓ (ℓ + 1/2) here rather than ℓ (ℓ + 1). However, one can show that
(ℓ + 1/2)/[ln(ℓ + 1) − ln ℓ] ≃ ℓ (ℓ + 1) + O(1) for ℓ ≫ 1, so this is actually the consistent choice when approximating the
sum as an integral. In any case, the different is negligible in the ℓ ≫ 1 regime where this approximation holds.
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1.1 Characterising the anisotropic background

From equation (1.17), we see immediately that we can define the naive estimator𝐶 (𝑚)
ℓ

≡ |𝛺ℓ𝑚 |2,
which is unbiased for all ℓ > 0,〈

𝐶
(𝑚)
ℓ

〉
= Var[𝛺ℓ𝑚] + |⟨𝛺ℓ𝑚⟩|2 = 𝐶ℓ + 4π�̄�2𝛿ℓ0. (1.19)

If we knew the value of �̄� , we could make this unbiased for all ℓ by defining𝐶 (𝑚)
ℓ

≡ |𝛺ℓ𝑚 −
√

4π�̄�𝛿ℓ0 |2;
however, �̄� is not a known quantity, but another parameter to be estimated.

For any given set of measured SHCs, the estimator𝐶 (𝑚)
ℓ

will not be exactly equal to its average value, but
will be subject to some random scatter. We can quantify this by calculating the variance of the estimator,

Var[𝐶 (𝑚)
ℓ

] =
〈
|𝛺ℓ𝑚 |4

〉
−

〈
|𝛺ℓ𝑚 |2

〉2
=

[
2
〈
|𝛺ℓ𝑚 |2

〉2 +
〈
(𝛺ℓ𝑚)2〉〈(𝛺∗

ℓ𝑚)
2〉] − 〈

|𝛺ℓ𝑚 |2
〉2

=
〈
|𝛺ℓ𝑚 |2

〉2 + (−)2𝑚 〈
𝛺ℓ𝑚𝛺

∗
ℓ,−𝑚

〉〈
𝛺ℓ,−𝑚𝛺

∗
ℓ𝑚

〉
= (1 + 𝛿𝑚0)𝐶 2

ℓ ,
(1.20)

where we have assumed Gaussianity in order to write the fourth moment in terms of second moments.
We see that this is a rather poor estimator, as its standard deviation is equal to (or greater than, for𝑚 = 0)
the mean value we want to extract, meaning that we can typically expect our estimate to be off by 100%.

Normally with a problem like this we would try to make as many independent measurements as
possible, and combine all of these to create an estimator with lower variance. More explicitly, if we have𝑁
independent and identically distributed (i.i.d.) unbiased estimators �̂�𝑖 , 𝑖 = 1, 2, . . . , 𝑁 for some parameter
𝑋 , each with some variance 𝜎2, then we can define an unbiased mean estimator �̂� ≡ (1/𝑁 )∑𝑁

𝑖=1 �̂�𝑖

whose variance is reduced by a factor of 1/𝑁 ,

Var[�̂� ] = 1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

Cov[�̂�𝑖 , �̂� 𝑗 ] =
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜎2𝛿𝑖 𝑗 =
𝜎2

𝑁
. (1.21)

In cosmological contexts, taking more measurements is not an option, as nature presents us with a single
random realisation of LSS. This results in a certain irreducible uncertainty when trying to estimate
ensemble-averaged quantities like the angular power spectrum from this single realisation. We call this
uncertainty cosmic variance.

Despite this fundamental limitation, however, we can still do significantly better than the naive estim-
ator (1.19). The key here is to note that, while we only have one random realisation of each SHC 𝛺ℓ𝑚 , the
(2ℓ + 1) different𝑚 indices for a given ℓ index are i.i.d., and therefore act as independent measurements
of the same𝐶ℓ multipole in the angular power spectrum. We can therefore average over these to define an
improved estimator,

𝐶ℓ ≡
1

2ℓ + 1

∑︁
𝑚

|𝛺ℓ𝑚 |2, (1.22)
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whose variance is

Var[𝐶ℓ] =
1

(2ℓ + 1)2

∑︁
𝑚

∑︁
𝑚′

Cov[|𝛺ℓ𝑚 |2, |𝛺ℓ𝑚′ |2]

=
1

(2ℓ + 1)2

∑︁
𝑚

∑︁
𝑚′

[〈
𝛺ℓ𝑚𝛺

∗
ℓ𝑚′

〉〈
𝛺∗
ℓ𝑚𝛺ℓ𝑚′

〉
+ ⟨𝛺ℓ𝑚𝛺ℓ𝑚′⟩

〈
𝛺∗
ℓ𝑚𝛺

∗
ℓ𝑚′

〉]
=

1
(2ℓ + 1)2

∑︁
𝑚

∑︁
𝑚′

𝐶 2
ℓ (𝛿𝑚𝑚′ + 𝛿𝑚,−𝑚′) = 2

2ℓ + 1
𝐶 2
ℓ .

(1.23)

This is significantly better than the variance in equation (1.20), particularly at higher multipoles ℓ ≫ 1.
In fact, if we assume the intensity field to be Gaussian, we can prove that the improved estimator (1.22) is
the best that we can construct, in the sense that it is the minimum-variance unbiased estimator (MVUE)
for the angular power spectrum. To show this, we use the fact that the variance of any unbiased estimator
𝜃 (𝑥) for a parameter 𝜃 of a probability distribution𝑝 (𝑥 |𝜃 ) obeys the Cramér-Rao bound [366],

Var[𝜃 ] ≥ −
〈
∂2L
∂𝜃 2

〉−1

, (1.24)

where L(𝑥 |𝜃 ) ≡ ln𝑝 (𝑥 |𝜃 ) is the log-likelihood for the distribution. In our case, the Gaussian log-
likelihood for the SHCs is

L(𝛺ℓ𝑚 |�̄� ,𝐶ℓ) = − 1
2

∑︁
ℓ𝑚

[
ln(2π𝐶ℓ) +

|𝛺ℓ𝑚 −
√

4π�̄�𝛿ℓ0 |2
𝐶ℓ

]
, (1.25)

so equation (1.24) becomes

Var[𝐶ℓ] ≥
〈∑︁
𝑚

[
|𝛺ℓ𝑚 −

√
4π�̄�𝛿ℓ0 |2

𝐶 3
ℓ

− 1
2𝐶 2

ℓ

]〉−1

=

(∑︁
𝑚

1
2𝐶 2

ℓ

)−1

=
2

2ℓ + 1
𝐶 2
ℓ , (1.26)

which is identical to what we found in equation (1.23). This corresponds to the irreducible uncertainty
on the angular power spectrum due to cosmic variance. We thus see that the estimator (1.22) saturates
this bound, meaning that it must be the MVUE for all ℓ > 0.

For the monopole ℓ = 0 we still have the issue of the estimator being biased, due to our inability
to subtract off the unknown mean intensity �̄� . All that we can do with the monopole is construct
an estimator for the mean intensity, �̂� ≡ 𝛺00/

√
4π; this is unbiased, ⟨�̂�⟩ = �̄� , and has variance

Var[�̂� ] = 𝐶0/(4π). The problem here is that we are attempting to infer both the mean and the variance
of a population (the ensemble of all possible realisations of the GWB monopole) with only a single sample
(the GWB monopole that we observe). This is impossible to do, since we have no way of knowing whether
the single realisation of the monopole that we observe is near to the cosmic mean value, or whether it is
out in the tails of the distribution (which could be the case if, e.g., we live near the centre of a cosmological
under-/over-density of GW sources). We therefore neglect𝐶0 in what follows, focusing on the higher
multipoles ℓ > 0.
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1.1 Characterising the anisotropic background

1 .1 .5 The gravitational-wave background in an inhomogeneous
Universe

We have now discussed in some detail how to treat the anisotropic GWB intensity as a random field on
the sphere, but so far we are lacking an anisotropic version of the Phinney formula (0.64) to predict what
this field should look like for a given population of GW sources.

To write down such a formula, we consider three sources of anisotropies in the GWB. First, we treat the
comoving number density of sources,𝑛, as inhomogeneous, writing𝑛 (𝑡 , 𝒙 ) = �̄� (𝑡 ) [1+𝛿𝑛 (𝑡 , 𝒙 )], where
𝛿𝑛 is the number density contrast, and �̄� is the homogeneous mean number density. (Since the comoving
rate density R is proportional to 𝑛, we therefore also have R = R̄ (1 + 𝛿𝑛), where R̄ is the homogeneous
mean rate density.) Second, we assume the emitted GWs propagate through a FLRW spacetime with scalar
perturbations, whose line element in the Newtonian gauge is

d𝑠2 = 𝑎2(𝜂)
[
−(1 + 2𝜓 (𝜂, 𝒙 )) d𝜂2 + (1 − 2𝜙 (𝜂, 𝒙 )) d𝒙 · d𝒙

]
, (1.27)

where𝜓 and 𝜙 are the Bardeen potentials [97], and𝜂 is conformal time, d𝜂 ≡ d𝑡 /𝑎 (𝑡 ). Finally, we
allow the sources and the observer to have peculiar velocities with respect to the cosmic rest frame, which
follow some cosmological velocity field 𝒗 (𝜂, 𝒙 ). The GWB intensity is then given to first order in the
perturbations by6 [210, 224, 345]

𝛺 ( 𝑓 , 𝒓 ) = 2𝐺
3𝐻 2

0

∫ 𝜂0

0
d𝜂 𝑎2(𝜂)

∫
d𝜻 R̄ (𝜂, 𝜻 ) d𝐸

d(ln 𝑓s)

×
[
1 + 𝛿𝑛 − 4𝜓0 + 5𝜓 + 𝒓 · (4𝒗 0 − 3𝒗 ) + 2

∫ 𝜂0

𝜂

d𝜂 ′ ∂𝜂 (𝜓 + 𝜙)
]
,

(1.28)

where ‘0’ subscripts indicate quantities evaluated at the observer’s position𝒙 0, while all other perturbations
are evaluated along the line of sight,𝒙 (𝜂, 𝒓 ) = 𝒙 0+(𝜂0−𝜂)𝒓 . We recall that 𝜻 denotes the set of parameters
characterising each CBC signal (masses, spins, etc.), and that d𝐸/d(ln 𝑓s) is the dimensionless GW energy
spectrum as a function of the source-frame frequency 𝑓s, which in this context is related to the observed
frequency 𝑓 by

𝑓s =
𝑓

𝑎

[
1 +𝜓0 −𝜓 − 𝒓 · (𝒗 0 − 𝒗 ) +

∫ 𝜂0

𝜂

d𝜂 ′ ∂𝜂 (𝜓 + 𝜙)
]
. (1.29)

Equation (1.28) is analogous to the standard approach for calculating the scalar perturbations in the
CMB temperature field, with the same three key contributions [247, 493]: a Sachs-Wolfe (SW) term due
to gravitational redshifting of the photons/gravitons, expressed in terms of the values of the Bardeen
potential𝜓 at the source and at the observer; a Doppler term written in terms of the peculiar velocities
of the source and the observer projected along the line of sight; and an integrated Sachs-Wolfe (ISW)
term encoding the time-evolution of both Bardeen potentials,𝜓 and 𝜙 . An important difference arises,
however, in the density contrast term 𝛿𝑛 . While the CMB is emitted from a last-scattering surface which
fills the entire sky, the GWB is in many cases (including the astrophysical background that is the focus of

6See Bertacca et al. [117] for a thorough derivation of a more complete version of this formula, as well as Bellomo et al. [111] for a
numerical implementation of this.
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this chapter) emitted from a discrete population of sources, whose number density fluctuations are far
and away the most important contribution to the angular power spectrum. As we will see in section 1.2.2
below, the resulting anisotropies are significantly larger than those in the CMB from the SW, Doppler,
and ISW effects. (Indeed, Bertacca et al. [117] found that these other terms contribute at most ∼ 10%
of the total angular power spectrum at a reference frequency of 𝑓 = 50 Hz.) In the remainder of this
chapter, we therefore neglect the metric perturbations𝜓 , 𝜙 , and consider an inhomogeneous population
of discrete sources in a homogeneous FLRW background spacetime.

One other effect which is important to include, aside from the source density contrast, is the effect of
the observer’s peculiar velocity 𝒗 0. Using equations (1.28) and (1.29), we see that this induces a kinematic
dipole along the 𝒗 0 direction,

𝛺 (𝒓 ) = �̄� + D 𝒗 0 · 𝒓 + · · · , D ≡ 𝑣0

(
4�̄� − ∂�̄�

∂(ln 𝑓s)

)����
𝑓s=𝑓 /𝑎

, (1.30)

or equivalently, in spherical harmonics,

𝛺10 =

√︂
4π
3

cos 𝜃𝑣D, 𝛺11 = −
√︂

2π
3

sin 𝜃𝑣 e−i𝜙𝑣D, 𝐶1 =
|𝛺10 |2 + 2|𝛺11 |2

3
=

4π
9
D2,

(1.31)
where 𝒗 0 = (𝜃𝑣 , 𝜙𝑣 ) and 𝑣0 ≡ |𝒗 0 | are the direction and magnitude of the observer’s peculiar velocity,
with the latter being measured by Planck as 𝑣0 ≈ 1.23 × 10−3 for the Solar System barycentre [54]. We see
that the coefficient D of the dipole term depends on the tilts of the GW energy spectra of the sources; the
intuition here is that for a fixed observer-frame frequency 𝑓 , the corresponding source-frame frequency 𝑓s
is lower for sources in the Doppler-boosted direction 𝒗 0, meaning that sources with red-tilted spectra give
rise to a larger coefficient, and vice versa. (We have been slightly lazy with our notation for this term—the
derivative should in fact be taken inside of both integrals in equation (1.28), so that the spectral tilt is
averaged over the source population.) For a population of inspiralling CBCs this tilt is simply ∼ 𝑓

2/3
s , so

we have D = (10/3)𝑣0�̄� . This provides an extremely useful consistency relationship between the GWB
monopole and kinematic dipole; if the dipole were observed to deviate from this value, this could provide
interesting evidence for some other population of sources contributing to the GWB.

Before we move on, it is important to point out that the statistics of the density contrast 𝛿𝑛 that
determine the AGWB angular power spectrum are usually non-Gaussian, particularly for late-Universe
sources such as CBCs. While the primordial perturbations that act as seeds for these inhomogeneities
are extremely well-described by Gaussian statistics (with CMB observations and other probes providing
strong bounds on primordial non-Gaussianity), the nonlinear dynamics of gravitational clustering are
known to cause significant non-Gaussianity in the cosmic matter distribution at late times [115, 451].
This implies that our treatment in terms of the angular power spectrum does not capture the full statistical
information present in the AGWB anisotropies, and that it may be interesting to consider higher-order
statistics such as the bispectrum, trispectrum, etc. We leave this for future work.
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1.2 Modelling the astrophysical background and its anisotropies

1 .2 Modelling the astrophysical background and its
anisotropies

The goal of this section is to compute the angular power spectrum of the AGWB, encapsulating the
clustering statistics of CBC host galaxies. To accomplish this, we use an all-sky mock lightcone galaxy
catalogue constructed from the Millennium𝑁 -body simulation. There are two key advantages of this
approach, compared to other calculations based on CMB-inspired linear Boltzmann codes [221]: first, we
are able to capture the full nonlinear gravitational dynamics of the cosmological matter distribution at
late times; and second, we are able to extract detailed astrophysical information about the galaxies that
form at the peaks of this distribution, which is necessary to calculate the GW emission from CBCs hosted
in each galaxy.

Before we come to this calculation, it is first necessary to construct a model for the isotropic component
of the AGWB, �̄� , as this depends on the CBC rate density and population properties that will determine
the contribution of each galaxy in the mock catalogue to our AGWB sky map.

1 .2 .1 The isotropic component

Averaging all cosmological perturbations to zero, we can rewrite equation (1.28) as

�̄� ( 𝑓 ) =
∑︁
𝑖

2𝐺
3𝐻 2

0

∫ ∞

0

d𝑧
(1 + 𝑧)2𝐻 (𝑧)

∫
d𝜻 R̄𝑖 (𝑧, 𝜻 )

d𝐸𝑖
d(ln 𝑓s)

, (1.32)

which we have written as a sum over the three key CBC populations: BBHs, BNSs, and BHNSs. (In
principle we could include other astrophysical sources here too, e.g. supernovae. However, the contribu-
tions from these other sources are expected to be negligible compared to CBCs [470].) There are three
ingredients we must specify in order to compute equation (1.32):

• the Hubble rate𝐻 (𝑧) of the FLRW background;

• the isotropic GW energy spectra d𝐸𝑖/d(ln 𝑓s) of the CBCs;

• the mean comoving rate density R̄𝑖 (𝑧, 𝜻 ) of each population, as a function of both the galaxy
parameters and the CBC parameters.

The first ingredient is the easiest; we assume a standard𝛬CDM Universe with Planck 2018 parameters,

𝐻 (𝑧) ≃ 𝐻0
√︁
𝛺𝛬 + 𝛺𝑚 (1 + 𝑧)3, 𝐻0 ≈ 67.7 km s−1 Mpc−1, 𝛺m ≈ 0.311, 𝛺𝛬 = 1−𝛺m.

(1.33)
For the second ingredient, we could use the ∼ 𝑓 2/3 energy spectrum we computed in section 0.3.1 if

we were interested purely in the inspiral regime, and were happy to neglect all post-Newtonian effects.
While this might be an adequate approximation for BNSs in the LIGO/Virgo frequency band, many
of the more massive BBHs in our population have their merger and ringdown in this frequency band,
meaning that we must adopt a more complete description of the energy spectrum. To this end, we use
the hybrid waveform models developed by Ajith et al. [58, 59] (as shown in figure 1.2), which combine
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Figure 1.2: The hybrid energy spectrum (1.34) for non-spinning BBHs from Ajith et al. [58, 59], shown here as
a fraction of the total mass𝑀 of the system, and as a function of the dimensionless frequency π𝐺𝑀 𝑓s = 𝑣

3
s .

Written in this form, the only remaining variable is the dimensionless mass ratio𝜂 ≡ 𝑚1𝑚2/(𝑚1 +𝑚2)2 ≤ 1/4.
The black dashed line shows the high-frequency cutoff at π𝐺𝑀 𝑓4 as a function of𝜂 .

post-Newtonian results in the inspiral regime with data from numerical relativity simulations to fit a
parameterised function covering the full inspiral-merger-ringdown spectrum. The hybrid BBH energy
spectrum is written as a piecewise function,

d𝐸
d(ln 𝑓s)

≈ 1
3
𝜂𝑀𝑣2

s ×


[
1 −

( 323
224 − 451

168𝜂
)
𝑣2

s
]2
, 𝑓s < 𝑓1

𝑐1( 𝑓s/𝑓1)
(
1 − 1.8897𝑣s + 1.6557𝑣2

s
)2
, 𝑓1 ≤ 𝑓s < 𝑓2

𝑐2( 𝑓s/𝑓2)7/3L2( 𝑓s | 𝑓2, 𝑓3), 𝑓2 ≤ 𝑓s < 𝑓4

, (1.34)

with the three pieces corresponding to the inspiral, merger, and ringdown respectively. Here 𝑣s ≡
(π𝐺𝑀 𝑓s)1/3 is the binary’s relative velocity, 𝑐1 and 𝑐2 are numerical constants enforcing continuity of the
spectrum, and L(𝑥 |𝑥0, 𝜎) ≡ (𝜎/π)/[𝜎2+ (𝑥−𝑥0)2] is the Lorentzian function. (Note that this reduces
to the simple Newtonian result (0.90) in the limit 𝑣s ≪ 1, as expected.) The frequencies {𝑓1, 𝑓2, 𝑓3, 𝑓4}
are given by

π𝐺𝑀 𝑓1 ≈ 0.0660 + 0.6437𝜂 − 0.05822𝜂2 − 7.092𝜂3,

π𝐺𝑀 𝑓2 ≈ 0.185 + 0.1469𝜂 − 0.0249𝜂2 + 2.325𝜂3,

π𝐺𝑀 𝑓3 ≈ 0.0925 − 0.4098𝜂 + 1.829𝜂2 − 2.87𝜂3,

π𝐺𝑀 𝑓4 ≈ 0.3236 − 0.1331𝜂 − 0.2714𝜂2 + 4.922𝜂3,

(1.35)

and correspond to the ISCO frequency, QNM frequency, inverse QNM damping time, and high-
frequency cutoff, respectively. We assume here that the constituents of the binary are non-spinning; while
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Figure 1.3: Comoving merger rate densities as functions of redshift for each of the three CBC populations we
consider: BBHs, BHNSs, and BNSs. The dotted curves, given by equation (1.36), are directly proportional
to the cosmic mean SFR. The dashed curves are proportional to the delayed SFR (1.38), with delay time
distributions as described in the text. The solid curves additionally account for the suppression in BH formation
from high-metallicity stellar progenitors using equation (1.39). (For BNSs, the latter two curves are identical.) In
each case, the overall amplitude is fixed by the redshift-zero merger rates (1.48) inferred from the direct detections
made by LIGO/Virgo; this has the slightly counter-intuitive effect of boosting the merger rate at higher redshifts
when the metallicity suppression is taken into account, since this suppression is strongest at redshift zero.

there is evidence for some large BH spins amongst the CBCs detected by LIGO/Virgo [33], modelling
the distribution of these spins greatly complicates our calculations by significantly increasing the dimen-
sionality of the parameter space, and has negligible effect on the final GWB spectrum [36, 342], so we
choose to ignore them here.

Equation (1.34) is not valid for BNSs and BHNSs, as in these cases the NS matter leaves imprints on
the spectrum at frequencies 𝑓s ≳ 𝑓1. However, the lower masses of these systems mean that they typically
merge outside of the LIGO/Virgo frequency band. We can therefore conservatively use equation (1.34)
for BNSs and BHNSs too, but truncate the spectrum at the ISCO frequency 𝑓1.

For the final ingredient, the comoving rate density, we need to capture the evolution in the number
density of CBCs of different masses over cosmological timescales. Since all CBCs are products of stellar
evolution, one simple choice is to tie the CBC rate density to the star formation rate (SFR) density,

R̄𝑖 (𝑧, 𝜻 ) ∝ �̄� (𝑧)𝑝𝑖 (𝜻 ), (1.36)

where �̄� is the mean SFR density as a function of redshift, and𝑝𝑖 (𝜻 ) is the probability density function
(PDF) of the parameters of each population of CBCs (in particular, their masses), with 𝑖 running over the
different CBC populations as before. The unknown proportionality factor here encodes the efficiency
with which newly-formed stars are converted into merging compact objects. This factor is challenging
to model directly; but fortunately, we don’t need to model it. Instead, we can fix the proportionality
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1 Anisotropies in the gravitational-wave background

using the local (i.e., 𝑧 = 0) CBC rate density, R̄ (0)
𝑖

, inferred from the individual detections made by
LIGO/Virgo,

R̄𝑖 (𝑧, 𝜻 ) = R̄ (0)
𝑖
𝑝𝑖 (𝜻 )

�̄� (𝑧)
�̄� (0) . (1.37)

(Here we assume that the PDFs are normalised,
∫

d𝜻 𝑝𝑖 (𝜻 ) = 1.)

One major problem with this model is that it implicitly assumes that newly-formed stars are immediately
converted into merging CBCs. In reality, the stars must first go through their main-sequence evolution
before eventually becoming compact objects, and then must gradually inspiral from large initial separations
until they reach the LIGO/Virgo band and merge. This entire process gives rise to a significant delay time
between star formation and the associated CBC mergers, typically several Myr. We therefore convolve the
SFR density at each redshift with some distribution of delay times,

�̄�d,𝑖 (𝑧) =
∫

d𝑡d 𝑝𝑖 (𝑡d)�̄� (𝑧f (𝑧, 𝑡d)), (1.38)

where 𝑧f is the redshift at which the stars were formed, which occurs at a lookback time𝑡d before the redshift
𝑧 at which the binary merges. By replacing �̄� with �̄�d,𝑖 in equation (1.36), we obtain an appropriately
delayed estimate for the merger rate density.

So far we have assumed that the proportionality in equation (1.36) holds regardless of the properties of
the binary and of the host galaxy. One exception to this which is important to capture here is that BH
formation is suppressed for stellar progenitors with large metallicities. Following Abbott et al. [36], we
model this metallicity dependence with a sharp cutoff on all BH formation for metallicities 𝑍 > 0.1𝑍⊙ ,
where 𝑍⊙ ≈ 0.02 is the solar metallicity. For BBHs and BHNSs, we therefore re-weight the rate density
by the fraction of SFR occurring at metallicities below this threshold,

�̄�d,𝑖 → �̄�
(𝑍 )

d,𝑖 ≡
∫

d𝑡d 𝑝𝑖 (𝑡d) 𝑓𝑖 (𝑧f )�̄� (𝑧f ), 𝑓𝑖 (𝑧) ≡


1, 𝑖 = BNS,∫ 0.1𝑍⊙
0 d𝑍 𝑝 (𝑍 |𝑧), 𝑖 = BBH,BHNS.

(1.39)
This is our model for the CBC rate density. See figure 1.3 for a comparison between this and the more
simplistic models described above.

We are now ready to flesh out each of the individual parts that make up this model; many of the details
here agree with the ‘fiducial’ model adopted by the LVK in, e.g., Abbott et al. [36]. For the cosmic mean
SFR density, we use the fitting function from Vangioni et al. [560],

�̄� (𝑧) = �̄�peak
𝛼 exp

[
𝛽 (𝑧 − 𝑧peak)

]
𝛼 − 𝛽 + 𝛽 exp

[
𝛼 (𝑧 − 𝑧peak)

] , (1.40)

which has a maximum value of �̄�peak ≈ 0.145𝑚⊙ yr−1 Mpc−3 at redshift 𝑧peak ≈ 1.86, with redshift
scaling either side of this peak set by the dimensionless constants 𝛼 = 2.80 and 𝛽 = 2.62. This SFR
density determines the rate at which stars produce metals and return these to the interstellar medium.
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Figure 1.4: The mean GWB intensity �̄� ( 𝑓 ) from stellar-mass CBCs in the LIGO/Virgo band, as predicted by
our model. (Note that this has units of inverse steradians, and is therefore smaller than the isotropic GWB
spectrum 𝛺 ( 𝑓 ) discussed in chapter 0 by a factor of 4π.) Solid curves show our default model, in which the
GW emission from BNSs and BHNSs is truncated at the ISCO frequency, while dotted curves show the case
where all binaries use the BBH waveform (1.34). The true GWB spectrum will likely lie somewhere between
these two extremes; however, note that LIGO/Virgo stochastic searches are insensitive to this frequency range.

Equation (1.40) therefore sets the cosmic mean metallicity, using an expression which we take from
Belczynski et al. [109],

𝑍 (𝑧) = 𝐻0

�̄�norm

∫ 20

𝑧

d𝑧 ′
�̄� (𝑧 ′)

(1 + 𝑧 ′)𝐻 (𝑧 ′) , �̄�norm ≈ 8.90𝑚⊙ yr−1 Mpc−3. (1.41)

We assume that log10 𝑍 follows a Gaussian distribution around this mean with standard deviation𝜎 = 1/2.
This distribution is cut off at log10 𝑍 = 0 (since 𝑍 ≤ 1 by definition), such that its PDF is

𝑝 (log10 𝑍 |𝑧) =
√︁

8/π
exp

[
−2

(
log10 𝑍 − log10 𝑍 (𝑧)

)2
]

erfc
[√

2 log10 𝑍 (𝑧)
] , (1.42)

and the corresponding metallicity correction factor is

𝑓𝑖 (𝑧) =


1, 𝑖 = BNS,

erfc
[√

2
(
log10 𝑍 (𝑧) − log10 0.1𝑍⊙

) ]
erfc

[√
2 log10 𝑍 (𝑧)

] , 𝑖 = BBH,BHNS,
(1.43)

where erfc(𝑥) ≡ 1 −
∫ 𝑥

0 d𝑡 e−𝑡 2 is the complementary error function.
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For the delay time distribution, we take𝑝𝑖 (𝑡d) ∝ 1/𝑡d between a minimum value 𝑡min of 20 Myr for
BNSs and 50 Myr for BBHs and BHNSs, and a maximum value equal to the age of the Universe at that
redshift, which for our cosmological model is

𝑡age(𝑧) =
2
3
𝛺

−1/2
𝛬

𝐻 −1
0 sinh−1

(√︄
𝛺𝛬

𝛺m(1 + 𝑧)3

)
. (1.44)

The delayed, metallicity-corrected SFR density can thus be written as

�̄�
(𝑍 )

d,𝑖 =
1

ln
(
𝑡age(𝑧)/𝑡min,𝑖

) ∫ ln 𝑡age (𝑧)

ln 𝑡min,𝑖

d(ln 𝑡d) 𝑓𝑖 (𝑧f (𝑧, 𝑡d))�̄� (𝑧f (𝑧, 𝑡d)), (1.45)

where the formation redshift 𝑧f is given by

1 + 𝑧f

1 + 𝑧 =

[
cosh

(
3
2
𝛺

1/2
𝛬
𝐻0𝑡d

)
− 𝐻 (𝑧)
𝛺

1/2
𝛬
𝐻0

sinh
(

3
2
𝛺

1/2
𝛬
𝐻0𝑡d

)]−2/3

. (1.46)

Finally, we need to specify the local rates and mass distributions of each CBC population. For BBHs,
following Abbott et al. [36], we assume the primary mass𝑚1 follows a broken power law distribution (as
inferred from the second GW transient catalogue, GWTC-2),

𝑝 (𝑚1) ∝

𝑚−1.58

1 , 5.875𝑚⊙ < 𝑚1 < 40.82𝑚⊙ ,

𝑚−5.59
1 , 40.82𝑚⊙ < 𝑚1 < 87.14𝑚⊙ ,

(1.47)

with the secondary mass 𝑚2 ≤ 𝑚1 given by a power-law distribution in the mass ratio 𝑞 ≡ 𝑚2/𝑚1,
𝑝 (𝑞 |𝑚1) ∝ 𝑞 1.4. For BNSs, we assume that both NS masses are uniformly distributed between 1𝑚⊙

and 2.5𝑚⊙ , while for BHNSs we assume the NS mass follows this same distribution, while the BH mass
follows the same distribution as the primary mass𝑚1 of the BBHs. We set the local BBH and BNS rates
equal to those inferred for these models [36], while for BHNSs we use the recent value inferred in Abbott
et al. [39],

R̄ (0)
BBH ≈ 19 Gpc−3 yr−1, R̄ (0)

BHNS ≈ 45 Gpc−3 yr−1, R̄ (0)
BNS ≈ 320 Gpc−3 yr−1. (1.48)

Putting all of these ingredients together, we find the AGWB spectrum shown in figure 1.4. We see
that, as expected, the spectrum follows a ∼ 𝑓 2/3 power law at low frequencies, before peaking and falling
off rapidly above ∼ 1 kHz due to the post-merger truncation of the CBC energy spectrum. This fall-off
occurs at higher frequencies for BBHs and BNSs than for BHNSs, since the BBH spectrum includes the
merger-ringdown emission from equation (1.34), while the BNS spectrum is dominated by much lower
total masses, and therefore much higher ISCO frequencies. The dotted curves show the hypothetical
case in which BNSs and BHNSs have the same merger-ringdown emission as BBHs; we see that this only
changes the overall spectrum at frequencies 𝑓 ≳ 1 kHz, and is therefore beyond the reach of LIGO/Virgo
stochastic searches. As such, we can safely neglect post-merger emission from these systems.
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Figure 1.5: Equatorial slice through the three-dimensional distribution of galaxies in the Millennium mock galaxy
catalogue. Each galaxy is coloured according to its contribution to the AGWB intensity, with nearby galaxies
dominating due to the ∼ 1/𝑟 2 fall-off in the GW flux. The numbered radial rings indicate comoving distances
in Mpc.

1 .2 .2 The full AGWB sky

We now construct a full AGWB sky map by applying the recipes described above to a mock light cone
galaxy catalogue [128]. This catalogue consists of 5,715,694 galaxies, and was built using a random tiling
technique applied to 64 post-processed snapshots saved during the Millennium𝑁 -body simulation [523],
with a time step of roughly 100 Myr and a box size of 500ℎ−1 Mpc. These snapshots of the CDM
distribution were analysed using the ‘L-galaxies’ semi-analytic model [233] to populate the simulation box
with galaxies and capture the baryonic physics of each of these galaxies (star formation, metallicity, etc.),
which is crucial for our purposes. The resulting large-scale galaxy distribution is illustrated in figure 1.5.

In order to compute the contribution of each galaxy to the AGWB, we query the catalogue data-
base [390] to extract its sky location, redshift, star formation history, metallicity history, and peculiar
velocity (the last of which has a small effect on the galaxy’s total GW energy emission and source frame
frequency through equations (1.28) and (1.29).) Computing the galaxy’s delayed SFR, as well as the
metallicity at the time of star formation, requires us to extract information that is not on the lightcone,
so for each galaxy we query the full Millennium simulation to extract its SFR and metallicity at each of
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Figure 1.6: Mollweide projection of our full-sky mock HEALPix map of the AGWB, based on data from the
Millennium simulation as described in the main text. Bright/dark pixels indicate over-/under-densities in the
AGWB intensity field at a reference frequency of 25 Hz.

the previous snapshots. This process is made more complicated by the fact that the lightcone galaxies
are the result of a sequence of mergers of smaller galaxies, each with its own independent star formation
history. Tracing all of the branches of these merger trees for all 5,715,694 lightcone galaxies results in a set
of 973,224,532 measurements of SFR, metallicity, and redshift, which we process to calculate the CBC
merger rate of each galaxy on the lightcone.

This results in a list of sky locations and GW intensities for each of the galaxies, which we combine
to produce the full-sky AGWB map shown in figure 1.6. This map uses the HEALPix7 pixelisation
scheme to partition the sky into equal-area curvilinear quadrilaterals, whose configuration is chosen to
optimise the computation of spherical harmonics [289]. We estimate the angular power spectrum𝐶ℓ of
this map using HEALPix’s ‘anafast’ routine; the result is shown in figure 1.7. Note that this spectrum
corresponds to a single random realisation of LSS,8 such that each of the𝐶ℓ multipoles shown here should
be interpreted as random draws from a distribution centred on the true angular power spectrum, with
width set by the cosmic variance we calculated in equation (1.23), 𝜎ℓ ≡ 𝐶ℓ/

√︁
ℓ + 1/2. We see in figure 1.7

that the anisotropies are very large compared to those in early-Universe observables such as the CMB,
with fluctuations on the order of a few percent at the largest angular scales ℓ ∼ 1, rising to fluctuations of
order unity at smaller angular scales ℓ ∼ 100. The resulting dipole component𝐶1 is significantly larger
than the kinematic dipole due to our peculiar motion, which is denoted with a red star in figure 1.7. These
large fluctuations reflect the nonlinear gravitational clustering of matter at late times, and retroactively
justify our decision to focus on the density contrast term in equation (1.28), neglecting the much smaller
contributions from the SW and ISW terms.

7http://healpix.sourceforge.net
8In principle, we could reduce the cosmic variance here by averaging the angular power spectra from multiple statistically-

independent mock catalogues; at the time of writing, however, the catalogue we use is the only full-sky lightcone which is
publicly available and is sufficiently large for our purposes. Furthermore, it is not possible to re-sample from this one catalogue
without introducing correlations that would interfere with the goal of reducing cosmic variance.
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Figure 1.7: The AGWB angular power spectrum computed from the map shown in figure 1.6. The quantity plotted
here,

√︁
ℓ (ℓ + 1)𝐶ℓ/(2π), is roughly the contribution of each angular multipole ℓ to the standard deviation

in the intensity field fluctuations. This has units of inverse steradians, and can be directly compared with the
mean intensity �̄� , which is shown as a horizontal black dashed line. The shaded blue region shows the 1𝜎
uncertainty in the angular power spectrum due to cosmic variance. The red point shows the kinematic dipole,√︁
ℓ (ℓ + 1)𝐶ℓ/(2π) = (2/3)D ≃ (20/9)𝑣0�̄� . The other coloured points with arrows show current upper

limits (95 % confidence) on the AGWB angular power spectrum from LIGO/Virgo, as well as forecast upper
limits from the Einstein Telescope (as computed in appendix A). All of the values shown here assume a reference
frequency of 25 Hz.

The impact of this nonlinearity can also be seen in the one-point statistics of the AGWB map. In
figure 1.8 we show a histogram of the GW intensity 𝛺 (𝒓 𝑖 ) in each of the pixels 𝒓 𝑖 in our map, normalised
to the mean value �̄� . The distribution is strongly skewed towards large, nonlinear overdensities, and
is clearly in very poor agreement with a Gaussian distribution (as expected based on our discussion in
section 1.1.5).

In figure 1.7 we also compare our predicted angular power spectrum with existing upper limits from
LIGO/Virgo searches, as well as sensitivity forecasts for Einstein Telescope [464]. These upper limits focus
on the lowest few multipoles (i.e., the largest angular scales), as these are the ones that the current detector
network is most sensitive to. We see that, despite steady improvement from O1 onward, LIGO/Virgo are
still several orders of magnitude away from detecting the AGWB anisotropies—which is unsurprising,
given that the isotropic component has still not yet been detected, and this is louder by a factor of ∼ 100.
However, looking forward to the late 2030s, we see that ET is likely to make a confident detection of
the AGWB anisotropies within just one year of observing time. This forecast assumes a cross-correlation
search between the three co-located interferometers that make up the ET proposal (one at each corner
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Figure 1.8: Histogram showing the distribution in GW intensity for each of the pixels in the map shown in
figure 1.6, normalised to the mean intensity �̄� . We see that the distribution is strongly non-Gaussian, with a
heavy tail due to numerous nonlinear overdensities.

of an equilateral triangle). As we show in appendix A, the geometry of this setup is such that ET on its
own is only sensitive to the ℓ = 2 and ℓ = 4 multipoles (as well as the monopole). However, adding
further third-generation ground-based interferometers to the network, such as the US-based Cosmic
Explorer proposal [295, 472], would break this degeneracy and provide sensitivity for a broader range of
multipoles, as well as improving the sensitivity to the AGWB overall. It is important to note that these
third-generation interferometers will be able to individually resolve the vast majority of BBH events in
the Universe (though only a smaller fraction of the BNS and BHNS events) [407, 471, 491, 513]. As
such, it is not clear how stochastic searches for the AGWB will change in the third-generation era, or
indeed whether it will still be useful to think about this signal as being inherently stochastic, rather than
attempting some kind of semi-coherent search along the lines of Smith and Thrane [518]. We leave a
deeper investigation of these questions, and how they impact upon cosmological studies using CBCs as
tracers of the cosmic matter distribution, for future work.

1 .2 .3 Estimating the impact of population uncertainties

There are clearly many modelling assumptions which go into our model for the AGWB and its angular
power spectrum, of which perhaps the least well-determined at present are the rates and mass distributions
we assume for the CBC populations. In order to investigate the impact of these assumptions on our
results, we can re-calculate the mean AGWB intensity and the angular power spectrum for a range of
alternative rates and mass distributions, and see how much variation this causes in the final results.

In figures 1.9 and 1.10 we perform a scan over∼ 104 different models for the BBH distribution, comput-
ing the isotropic component and angular power spectrum for each model. Each set of model parameters
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Figure 1.9: Scatter plot of the mean AGWB intensity (at a reference frequency of 66 Hz) and local BBH rate
density R̄ (0)

BBH in ∼ 104 samples from the distribution of possible BBH populations inferred from the first GW
transient catalogue. Each sample is coloured according to its value of the BH mass power law index 𝛼BH, with
larger values corresponding to steeper fall-offs at large BH masses.

is drawn from a posterior hyperparameter distribution inferred from the first five confident BBH detec-
tions reported by LIGO/Virgo (GW150914 [5], GW151226 [7], GW170104 [10], GW170608 [16], and
GW170814 [11]),9 using the methodology developed by Wysocki et al. [590]. For simplicity we assume a
straightforward power-law distribution for the primary BH mass,𝑝 (𝑚1) ∝ 𝑚−𝛼BH

1 , between a minimum
mass of 5𝑚⊙ and a maximum mass𝑚max that is allowed to vary. The secondary BH mass is assumed to
be uniformly distributed between 5𝑚⊙ and𝑚1. The parameters 𝛼BH and𝑚max, along with the local
BBH rate density R̄ (0)

BBH, therefore fully specify the BBH distribution needed for our calculations, with all
other details (star formation rate, metallicity threshold, etc.) held fixed.

In figure 1.9, we see that this variation in the BBH population causes the mean AGWB intensity �̄�
to vary by roughly an order of magnitude. While there is a clear (and intuitively sensible) trend of �̄�
increasing in line with the local rate density R̄ (0)

BBH, there is still a significant amount of scatter around this
trend. Much of this scatter is captured by changes in the BH mass power law index 𝛼BH, with shallower
indices giving rise to stronger AGWB spectra. Again, this makes intuitive sense, as decreasing 𝛼BH while
holding the local rate density fixed effectively increases the relative importance of more massive BBHs,
and these provide a much larger contribution in terms of GW energy radiated. This interesting structure
highlights the fact that, once detected, the isotropic component of the AGWB could provide interesting
and useful astrophysical information about the CBC populations from which it is emitted.

9This was the most complete study possible in Autumn 2018, when this work was first performed. Many more BBHs have been
detected since that time [22, 33, 40].
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Figure 1.10: The AGWB angular power spectrum, normalised to the mean intensity �̄� . While the light shaded
region shows 1𝜎 cosmic variance as before, the dark shaded region now shows the 3𝜎 uncertainty region
corresponding to the variation in the BBH population described in the main text. We see that this population
uncertainty is always much smaller than cosmic variance (at least for the range of BBH population models
considered here).

In contrast with this large variation encoded in the isotropic component, we see in figure 1.10 that,
provided we normalise with respect to the isotropic amplitude, the AGWB angular power spectrum varies
surprisingly little over the range of BBH population models we consider. This shows us that slightly
re-weighting different galaxies in terms of their BBH populations does little to change the overall clustering
statistics of the signal. As a result, our prediction for the angular power spectrum appears reasonably
robust to population uncertainties, once one factors out the variation in the overall isotropic amplitude.

In the time since this work was first performed, the number of detected BBH events has grown signific-
antly, and the GW astronomy community has begun to use ever more sophisticated models to capture
their mass spectrum [33]. As such, it would be interesting to repeat this exercise again in future work, to
see how our evolving knowledge of BBHs (and other CBCs) affects our expectations for the AGWB and
its anisotropies. It would also be interesting to explore the impact of varying other model assumptions,
particularly in ways which could have more influence on the relative contributions of different galaxy
populations with different clustering properties. For example, Adhikari et al. [49] showed that if CBCs
have longer delay times, then the GW events we observe today are concentrated in galaxies with larger
stellar mass (since these dominate the star formation at higher redshifts), which live in more massive dark
matter haloes and are therefore more tightly clustered.

78



1.3 Shot noise in the astrophysical background

1 .3 Shot noise in the astrophysical background

In sections 1.1 and 1.2, we characterised the anisotropies in the AGWB in terms of their angular power
spectrum components𝐶ℓ . These are statistical quantities, describing the expected angular correlation of
the AGWB after averaging the signal in at least three distinct ways:

1. averaging over random realisations of LSS (i.e., over an ‘ensemble of Universes’);

2. averaging over the discrete positions of galaxies within the matter distribution to give a continuous
galaxy number density field;

3. averaging over the merger times of CBCs within each galaxy to give a mean merger rate.

However, the AGWB we observe corresponds to a single Universe, with some discrete number of galaxies,
each with some discrete number of CBCs. In practice, therefore, we are unable to perform the averaging
process described above, leading to random fluctuations in the observed𝐶ℓ ’s, which must be accounted
for when comparing to theoretical predictions. What’s more, our theoretical predictions in the previous
section are themselves based on a simulated galaxy catalogue with a single realisation of LSS and a finite
number of galaxies, so it is doubly important to understand these effects.

We have already accounted for the first point above: the uncertainty due to our observation of a single
realisation of LSS, i.e., cosmic variance. In section 1.1.4 we saw that, for a Gaussian AGWB, this uncertainty
is given by Var[𝐶ℓ] = 𝐶 2

ℓ
/(ℓ + 1/2). Besides cosmic variance, we must account for the fact that the AGWB

is emitted from a finite number of galaxies (sampled from the underlying density field), each hosting a finite
number of CBCs (sampled from the mean merger rate). These two sampling processes, corresponding to
the second and third points in the list above, follow Poissonian statistics and introduce shot noise to the
observed angular power spectrum. This is a very important effect, which has been studied for decades
in contexts such as galaxy redshift surveys [268, 296] and the cosmic infrared background [361]. In the
context of the AGWB, Meacher et al. [422] used numerical simulations to study the effects of shot noise
on the isotropic component, but until now the effects of shot noise on the AGWB anisotropies have been
ignored.

In this section, we derive expressions for the AGWB angular power spectrum in the presence of shot
noise, and calculate the size of these shot-noise effects for our model of the AGWB in the LIGO/Virgo
frequency band. We then develop an optimal data-analysis method for inferring the true, cosmological
angular power spectrum in the presence of shot noise.

1 .3 .1 The angular power spectrum, with and without shot noise

We now show how the inclusion of generic shot-noise effects in the underlying statistics of the AGWB
leads to an additional term in the angular power spectrum. For later convenience, we write the intensity
field as an integral over comoving distance,

𝛺 ( 𝑓 , 𝒓 ) =
∫

d𝑟 𝑟 2𝜔 ( 𝑓 , 𝒓 ), (1.49)
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where𝜔 is an ‘AGWB density’ with dimensions [length]−3. Comparing with equation (1.28), we see that

𝜔 ( 𝑓 , 𝒓 ) = 2𝐺
3(1 + 𝑧)2

(𝑟𝐻
𝑟

)2
∫

d𝜻 R(𝒓 , 𝜻 ) d𝐸
d(ln 𝑓s)

, (1.50)

where 𝑟𝐻 ≡ 1/𝐻0 is the Hubble radius. Note that the rate density R is now a random field in three
dimensions, with mean equal to the isotropic but redshift-dependent value R̄ that we discussed in the
previous section. The SHCs are given in terms of the density 𝜔 by

𝛺ℓ𝑚 ≡
∫
𝑆2

d2𝒓 𝑌 ∗
ℓ𝑚 (𝒓 )𝛺 (𝒓 ) =

∫
d3𝒓 𝑌 ∗

ℓ𝑚 (𝒓 )𝜔 (𝒓 ). (1.51)

We calculate the angular power spectrum by specifying the second moment of the 𝜔 field. Neglecting
shot noise, this is simply

Cov[𝜔 (𝒓 ), 𝜔 (𝒓 ′)]LSS = �̄� (𝑟 )�̄� (𝑟 ′)𝜉 (𝑟 , 𝑟 ′, 𝜃 ), (1.52)

where 𝜉 is the two-point correlation function of𝜔 , describing the probability in excess of random of similar
values of the field being clustered together. Due to statistical isotropy, 𝜉 only depends on the angular
positions 𝒓 , 𝒓 ′ of the two points through their separation 𝜃 ≡ cos−1(𝒓 · 𝒓 ′). (It does, however, depend
on their radial distances, as these influence the intensity of the GW flux.) Using equations (1.49), (1.13),
and (1.52), we find the𝐶ℓ ’s in the absence of shot noise,

𝐶 LSS
ℓ = 2π

∫ +1

−1
d cos 𝜃 𝑃ℓ (cos 𝜃 )

∫
d𝑟 𝑟 2

∫
d𝑟 ′ 𝑟 ′2�̄� (𝑟 )�̄� (𝑟 ′)𝜉 (𝑟 , 𝑟 ′, 𝜃 ). (1.53)

We now introduce a shot-noise term that encompasses both the galaxy sampling and the CBC rate
sampling. Assuming these effects can jointly be treated as a local Poisson process that is independent of
LSS, we have

Cov[𝜔 (𝒓 ), 𝜔 (𝒓 ′)] = �̄� (𝑟 )�̄� (𝑟 ′)𝜉 (𝑟 , 𝑟 ′, 𝜃 ) + V(𝑟 )𝛿 3(𝒓 − 𝒓 ′), (1.54)

where V is some function describing the variance due to the finite sample, which is independent of
direction due to statistical isotropy. The form of this new shot-noise term (in particular, the fact that
it is proportional to 𝛿 3(𝒓 − 𝒓 ′)), is motivated by the equivalent expression for galaxy surveys (see, e.g.,
appendix A of Feldman et al. [268], or section 2.4 of Hamilton [296]). It is quite simple to convince
oneself that the modification due to shot noise should take this form: there should be an extra term
added to the covariance, as shot-noise fluctuations increase the variations in the measured values of 𝜔
throughout space, above the intrinsic variance due to the clustering of GW sources. However, since the
shot-noise fluctuations at one point in space are causally disconnected from those at any other point, the
fluctuations at any two points are statistically independent, and the extra term in the covariance should
vanish except when the two points are coincident, leading to the delta function. Equation (1.54) thus
arises naturally from the superposition of independent Poisson processes at each point in space. We flesh
this argument out more quantitatively in section 1.3.2 below.
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1.3 Shot noise in the astrophysical background

Using equations (1.49), (1.13), (1.53), and (1.54), as well as the fact that 𝑃ℓ (1) = 1 for all ℓ, the full
angular power spectrum is then

𝐶ℓ = 𝐶
LSS
ℓ +W, W ≡

∫
d𝑟 𝑟 2V(𝑟 ). (1.55)

We therefore see that the shot noise generates a spectrally white (i.e., independent of ℓ) contribution to
the𝐶ℓ ’s.

1 .3 .2 Calculating the shot-noise power

In order to evaluate equation (1.55), we must derive an expression for the local Poisson variance function
V , accounting for the random sampling of both the galaxy number density 𝑛 (𝒓 ) and the CBC event rate
per galaxy𝑅 , whose product gives the CBC rate density R = 𝑛𝑅 .

Consider a volume element δ𝑉 at position 𝒓 . We treat the number of galaxies in this region as a Poisson
random variable,10𝑁 ∼ Pois[δ𝑉 𝑛 (𝒓 )]. Assuming for now that these galaxies and the CBCs in them all
have the same parameter values 𝜻 , the CBC event counts for each galaxy in a given source-frame time
interval𝑇s are i.i.d. Poisson random variables, 𝜆𝑖 ∼ Pois[𝑅𝑇s]. The total CBC event count from δ𝑉 is
then𝛬 =

∑𝑁
𝑖=1 𝜆𝑖 . This quantity—a sum over Poisson random variables, with a number of terms that is

itself a Poisson random variable—follows a compound Poisson distribution. In appendix B, we show that
the variance of this distribution is

Var[𝛬] = δ𝑉 �̄�
[
𝑅𝑇s + (𝑅𝑇s)2] . (1.56)

Taking the sampling as independent for different spatial volumes and for different parameter values, we
therefore find

Cov[𝛬(𝒓 𝑖 , 𝜻 ), 𝛬(𝒓 𝑗 , 𝜻 ′)] = δ𝑉 �̄�
[
𝑅𝑇s + (𝑅𝑇s)2]𝛿𝑖 𝑗𝛿 (𝜻 , 𝜻 ′), (1.57)

where we have introduced a Kronecker delta over the volume cells and a Dirac delta over parameter space
to enforce this independence, and have averaged over LSS so that 𝑛 (𝒓 ) → �̄� (𝑟 ). Replacing𝛬with the
comoving rate density, R = 𝑛𝑅 ≃ 𝛬/(δ𝑉𝑇s), and taking δ𝑉 → 0, we are left with

Cov[R,R ′]shot =

(
R̄
𝑇s

+ R̄2

�̄�

)
𝛿 (3) (𝒓 − 𝒓 ′)𝛿 (𝜻 , 𝜻 ′), (1.58)

where R ′ is shorthand for R(𝒓 ′, 𝜻 ′), and where we have set 𝛿𝑖 𝑗/δ𝑉 → 𝛿 (3) (𝒓 − 𝒓 ′). The relationship
between the source-frame time𝑇s and the observer-frame time𝑇 will generally depend on cosmological
metric perturbations and peculiar velocities at the location of the source (c.f. equation (1.29) for the
source-frame GW frequency), but to leading order it is simply𝑇s = 𝑇 /(1 + 𝑧).

10We stress that this is only an approximation. A more sophisticated approach would use the halo model of LSS [213], accounting for
the statistical properties of dark matter haloes and of different populations of galaxies within them. However, this approximation
is sufficiently accurate for our purposes (particularly as the galaxy-number contribution to the shot noise is much less than the
CBC rate contribution—see below).
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1 Anisotropies in the gravitational-wave background

Figure 1.11: A toy-model depiction of shot noise. All four images are HEALPix maps with scale-invariant angular
power spectra ℓ (ℓ + 1)𝐶ℓ = constant, plus varying degrees of shot noise power. From top to bottom, the shot
noise power is equal to W = 0, W = 10−5�̄�2, W = 10−4�̄�2, and W = 10−3�̄�2. Physically, these represent
different observations of the AGWB, with different observation time intervals, leading to different levels of
shot noise power. All four maps have the same underlying random realisation of LSS, which is why the same
large-scale features can be recognised in each of them. However, increasing the amount of shot noise leads to
much stronger anisotropies on small scales, making it harder to discern the relatively subtle large-scale features.
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1.3 Shot noise in the astrophysical background

Using equations (1.50) and (1.54), the shot-noise power is therefore

W =
4𝐺 2

9𝐻 2
0

∫
d𝑟

(1 + 𝑧)4

(𝑟𝐻
𝑟

)2
∫

d𝜻
(
R̄
𝑇s

+ R̄2

�̄�

) [
d𝐸

d(ln 𝑓s)

]2
(1.59)

Equation (1.59) is our main result, and has two distinct applications: (𝑖 ) interpreting future observations of
the AGWB, and (𝑖 𝑖 ) improving our theoretical models. For the first application, we can use equation (1.59)
to calculate the expected shot noise in the observed𝐶ℓ spectrum as a function of observing time, given a
model for the galaxy number density and CBC merger rate. The R̄/𝑇s term dominates over the R̄2/�̄�
term, since the latter is suppressed by a factor of R̄𝑇s/�̄� = 𝑅𝑇s, which is∼ 10−6 for a typical galaxy (i.e., the
CBC rate per galaxy is on the order of ∼ 1 Myr−1). For the second application, we can use equation (1.59)
to calculate the error inherent to our theoretically-predicted spectrum from the previous section due
to the finite galaxy sampling in the simulated galaxy catalogue. Since these predictions do not involve
simulating the time of arrival of discrete GW signals, but average over the CBC rate, they exclude the
shot noise due to sampling of this rate. This is identical to taking the limit𝑇 → ∞, meaning that the
catalogue predictions contain shot noise due to the R̄2/�̄� term only. We therefore distinguish between
the ‘observational shot noise’ and the ‘catalogue shot noise’,

Wobs =
4𝐺 2

9𝐻 2
0𝑇

∫
d𝑟

(1 + 𝑧)3

(𝑟𝐻
𝑟

)2
∫

d𝜻 R̄
[

d𝐸
d(ln 𝑓s)

]2
,

Wcat =
4𝐺 2

9𝐻 2
0

∫
d𝑟

(1 + 𝑧)4

(𝑟𝐻
𝑟

)2
∫

d𝜻
R̄2

�̄�cat

[
d𝐸

d(ln 𝑓s)

]2
.

(1.60)

Here, �̄�cat represents the galaxy number density in the catalogue, which is significantly less than the true
galaxy number density �̄� (this is because only galaxies brighter than a certain magnitude are included).

1 .3 .3 Removing the foreground

Inspecting equation (1.59), we see that the integrand diverges as 𝑟 → 0. This is to be expected, for two
reasons. First, the Poisson statistics become progressively worse at small distances, as we are looking at
smaller spherical shells that contain fewer galaxies, so the notion of a smooth number density �̄� breaks
down as 𝑟 → 0. Second, the contribution of a single CBC to the total AGWB flux becomes much larger
at smaller distances, so a CBC that is arbitrarily close can bias the power spectrum by an arbitrarily large
amount.

In order to regulate this divergence, it is necessary to introduce a cutoff distance 𝑟∗, below which we
remove any CBC signals and do not consider them part of the AGWB. (This is similar to what is done
with, e.g., the cosmic infrared background [361].) We are free to choose the value of 𝑟∗, with larger values
helping to reduce the shot noise as much as possible. However, the choice of 𝑟∗ will also affect𝐶 LSS

ℓ
, and

this must be accounted for when making theoretical predictions.
In principle, one can implement this foreground cut by removing from the GW strain time seriesℎ (𝑡 )

any intervals in which an individual CBC with a comoving distance 𝑟 < 𝑟∗ is identified. The CBC chirp
signal encodes the luminosity distance 𝑑𝐿 , which can easily be converted to the comoving distance 𝑟 by
assuming a fiducial cosmology. However, 𝑑𝐿 cannot be measured with arbitrary precision, particularly
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1 Anisotropies in the gravitational-wave background

Figure 1.12: The AGWB angular power spectrum, plotted for different values of the cutoff distance 𝑟∗. The
solid curves are calculated using a mock galaxy catalogue from the Millennium Simulation (with the catalogue
error Wcat removed, though this has negligible effect), and represent the cosmological power spectrum𝐶 LSS

ℓ
.

The dashed curves include the observational shot noise after𝑇 = 1 yr, giving the full power spectrum𝐶ℓ =

𝐶 LSS
ℓ

+Wobs. The shaded regions indicate cosmic variance. Wobs is divergent in the case 𝑟∗ = 0, and so is not
plotted.

as it is degenerate with the inclination of the binary. What’s more, the detectability of CBCs at a given
distance is also a function of sky position, due to the anisotropic beam pattern of the detectors. Removing
nearby sources based on a signal-to-noise threshold (as in Meacher et al. [422]) thus risks biasing the power
spectrum by favouring particular kinds of CBC events and particular regions of the sky. The alternative
is to set 𝑟∗ small enough that all CBCs at distances 𝑟 < 𝑟∗ are detectable, so the foreground removal
can be implemented in an unbiased and isotropic manner, without selection effects. This would mean
including some number of CBCs at 𝑟 > 𝑟∗ in the stochastic analysis despite the fact that they can be
individually resolved. This proposal presents a serious data analysis challenge, and it is unclear whether it
will be possible in practice to remove the foreground in a way which does not introduce directional biases.
Looking forward to third generation interferometers such as Einstein Telescope, we expect that essentially
all BBHs in the observable Universe will be individually resolvable [407, 471, 491, 513], meaning that
our framing here in terms of a resolvable foreground and a stochastic target signal will likely have to be
modified. Indeed, it will likely become preferable to study anisotropies in the distribution of resolved
events, although some care will have to be taken in combining this with the large number of BNS and
BHNS events that will remain unresolvable. We leave a detailed examination of these issues for future
work.
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1.3 Shot noise in the astrophysical background

1 .3 .4 Results and discussion

Using the AGWB model described above, we can calculate the size of the observational and catalogue
shot-noise terms from equation (1.60) for different values of the foreground cutoff distance 𝑟∗. We find
that the catalogue shot noise is at most Wcat ≈ 3 × 10−29, and is typically several orders of magnitude
smaller than this for larger values of 𝑟∗. Since the monopole is �̄� ≈ 10−10, this represents shot-noise
fluctuations of ≲ 0.01%. This is negligible compared to the true power spectrum𝐶 LSS

ℓ
, so our earlier

predictions based on the Millennium simulation are completely unaffected.
On the other hand, we find that the observational shot noise Wobs is generically several orders of

magnitude larger than the true angular power spectrum𝐶 LSS
ℓ

for any reasonable values of 𝑟∗ and𝑇 . (In
fact,

√︁
Wobs ≈ �̄� , so the shot-noise fluctuations are typically as large as the monopole itself.) This is

illustrated in figure 1.12 for 𝑟∗ = 250 Mpc and 𝑟∗ = 500 Mpc. Note that𝐶 LSS
ℓ

also changes with 𝑟∗, partly
because the total GW emission is reduced, causing an overall reduction in the spectrum, and partly because
the nearest galaxies contribute most strongly to the AGWB, so that their removal changes the shape of
the spectrum. Calculations of𝐶 LSS

ℓ
using the catalogue are not reliable for values of 𝑟∗ significantly larger

than ∼ 500 Mpc, due to the incompleteness of the catalogue at high redshift. However, our calculations
indicate that even increasing 𝑟∗ to 2 Gpc can only reduce Wobs by less than an order of magnitude, so this
seems unlikely to solve the problem.

The numerical values given in figure 1.12 depend on the details of the AGWB model, and include a
multitude of random and systematic uncertainties in, e.g., the populations of astrophysical sources that
contribute, their emission rates, and the nature of their clustering. However, we stress that the main
result, equation (1.55), is generic, and is grounded in simple and realistic physical principles. Any finite
population of sources will have random Poissonian fluctuations. If these fluctuations are statistically
independent at different spatial locations (i.e., if the shot-noise fluctuations are causally disconnected),
then the angular power spectrum generically gains an extra white-noise component, W. If these sources
are finite in time, then basic Poisson statistics dictates that this noise decays as the inverse of the observation
time, W ∝ 1/𝑇 .

1 .3 .5 Temporal shot noise and hierarchical averaging

Now that we have diagnosed the issue of shot noise, we turn our attention to possible ways in which it can
be mitigated when carrying out searches for AGWB anisotropies. In order to do this, it is helpful to first
think more carefully about the statistics of the observed AGWB intensity under shot noise fluctuations,
and how these statistics are distinct from those associated with LSS.

We have shown above that, for the AGWB, the temporal shot noise associated with finite CBCs per
observation time is significantly larger than the true𝐶ℓ spectrum, while the spatial shot noise associated
with a finite galaxy number density is significantly smaller; we therefore focus exclusively on the former in
this analysis. This allows us to exploit the fact that we have observational access to multiple realisations of
the temporal shot noise: for each successive observation interval𝜏 , we can obtain a set of SHCs with shot
noise power W𝜏 ∝ 1/𝜏 . The shot-noise fluctuations in each set of SHCs are associated with a different set
of CBCs in a different set of galaxies, so it is immediately clear that each successive shot noise realisation is
statistically independent of the others. This is in contrast with the spatial shot noise, for which we can

85



1 Anisotropies in the gravitational-wave background

Figure 1.13: An illustration of the two averaging procedures introduced in Sec. 1.3.5. The right column shows
four independent realisations of shot noise (at a level of W = 10−4�̄�2) for a single given realisation of LSS.
Averaging over many such realisations corresponds to the ⟨· · ·⟩𝑆 operation. Similarly, the central column shows
four independent realisations of LSS, with zero shot noise. Averaging over many such realisations corresponds to
the ⟨· · ·⟩𝛺 operation, and results in a perfectly uniform field (i.e. all SHCs equal to zero, except the monopole).

only observe a single realisation (in other words, the random positions of galaxies are a persistent random
field, while the random sky locations of CBCs form a transient random field).

There are two logically distinct random processes that govern the observed SHCs: the distribution of
matter on large scales, and the emission of a finite number of GW signals from this matter distribution in
a given observation period. We model these processes, and their corresponding ensemble averages, in a
hierarchical manner.

1. The true 𝛺ℓ𝑚 are drawn from Gaussian distributions with variance𝐶ℓ . This process is associated
with the cosmological averaging operation from section 1.1,

⟨· · ·⟩𝛺 ≡ cosmological average, (1.61)

which can be thought of as an average over an ‘ensemble of Universes’, with each Universe having a
distinct random realisation of LSS. (Of course, we only have access to a single such realisation, and
this gives rise to cosmic variance.)

2. The true 𝛺ℓ𝑚 are modulated by shot noise, so that a set of ‘noisy’ SHCs 𝛺 𝑖
ℓ𝑚

is drawn from a
distribution with the true components 𝛺ℓ𝑚 as its mean. This draw is independent for each time
interval, with different intervals being labelled by the index 𝑖 . We write the associated average over
shot noise realisations as

⟨· · ·⟩𝑆 ≡ shot noise average. (1.62)

Physically, this reflects the fact that a given cosmological distribution of galaxies can correspond to
many different GWB realisations, as the number and times-of-arrival of transient GW signals from
each galaxy are essentially random.

Figure 1.13 is a schematic representation of the two averaging procedures.
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More quantitatively, the first two moments of the noisy SHCs under the shot noise average for a fixed
realisation of LSS are〈

𝛺 𝑖
ℓ𝑚

〉
𝑆
= 𝛺ℓ𝑚 , Cov[𝛺 𝑖

ℓ𝑚 , 𝛺
𝑗

ℓ′𝑚′]𝑆 = 𝛿ℓℓ′𝛿𝑚𝑚′𝛿𝑖 𝑗W𝜏 . (1.63)

The first equality holds by definition, while the second states that each SHC in each time interval has
equal shot noise power, and is uncorrelated with all the others.11 Averaging also over realisations of LSS,
we find 〈

𝛺 𝑖
ℓ𝑚

〉
𝑆,𝛺

= 0, Cov[𝛺 𝑖
ℓ𝑚 , 𝛺

𝑗

ℓ′𝑚′]𝑆,𝛺 = 𝛿ℓℓ′𝛿𝑚𝑚′
(
𝐶ℓ + 𝛿𝑖 𝑗W𝜏

)
, (1.64)

where we have used equation (1.17), and have introduced the shorthand ⟨· · ·⟩𝑆,𝛺 ≡ ⟨⟨· · ·⟩𝑆 ⟩𝛺 .12 (Recall
that we are focusing on ℓ > 0, so the SHCs all have zero mean.)

1 .3 .6 Mitigating the shot noise

In this section, we use (1.64) to define a function of the noisy SHCs 𝛺 𝑖
ℓ𝑚

that is an unbiased estimator of
the true angular power spectrum𝐶ℓ in the presence of shot noise. We then show that (in the appropriate
limit) this is the minimum-variance unbiased estimator (MVUE) for the true angular power spectrum.

We start by modifying the standard autocorrelation estimator (1.22), forming a set of cross-correlations
between different time intervals,

𝐶
𝑖 𝑗

ℓ
≡ 1

2ℓ + 1

+ℓ∑︁
𝑚=−ℓ

𝛺 𝑖
ℓ𝑚𝛺

𝑗∗
ℓ𝑚
. (1.65)

These are unbiased if and only if 𝑖 ≠ 𝑗 ,〈
𝐶
𝑖 𝑗

ℓ

〉
𝑆,𝛺

= 𝐶ℓ + 𝛿𝑖 𝑗W𝜏 . (1.66)

We can combine these estimators in much the same way that we combine multiple ‘naive’ estimators
(1.19) to form the standard estimator (1.22). Suppose that our total observing time is𝑇 , so that there
are𝑁𝜏 ≡ 𝑇 /𝜏 time segments. Then we have𝑁𝜏 (𝑁𝜏 − 1)/2 pairs (𝑖 , 𝑗 ) for which 𝑖 ≠ 𝑗 . Summing over
these, we define the combined estimator

𝐶ℓ ≡
2

𝑁𝜏 (𝑁𝜏 − 1)
∑︁
𝑖 𝑗

𝐶
𝑖 𝑗

ℓ
, (1.67)

where we introduce the shorthand
∑
𝑖 𝑗 ≡

∑𝑁𝜏
𝑖=1

∑𝑁𝜏
𝑗=𝑖+1. This is unbiased, ⟨𝐶ℓ⟩𝑆,𝛺 = 𝐶ℓ , with variance

given by

Var[𝐶ℓ]𝑆,𝛺 =

[
2

𝑁𝜏 (𝑁𝜏 − 1) (2ℓ + 1)

]2 ∑︁
𝑚

∑︁
𝑚′

∑︁
𝑖 𝑗

∑︁
𝑖 ′𝑗 ′

Cov
[
𝛺 𝑖
ℓ𝑚𝛺

𝑗∗
ℓ𝑚
, 𝛺 𝑖 ′

ℓ𝑚′𝛺
𝑗 ′∗
ℓ𝑚′

]
𝑆,𝛺

. (1.68)

11The lack of correlation between time intervals is due to the acausal relationship between distant GW sources, while the lack of
correlation between different ℓ𝑚 is due to statistical isotropy.

12Note that Cov[𝑋 ,𝑌 ]𝑆,𝛺 ≡ ⟨𝑋𝑌 ∗⟩𝑆,𝛺 − ⟨𝑋 ⟩𝑆,𝛺 ⟨𝑌 ∗⟩𝑆,𝛺 , which is not equal to ⟨Cov[𝑋 ,𝑌 ]𝑆 ⟩𝛺 .
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Evaluating (1.68) requires us to evaluate the fourth moment of the noisy SHCs. This would be trivial
if the SHCs were all Gaussian, but we must account for the Poisson-like nature of the shot noise. In
appendix B we calculate the fourth moment using the same statistical model for the CBC rate density as
in section 1.3.2; this results in

Var[𝐶ℓ]𝑆,𝛺 =
2

2ℓ + 1

[
𝐶 2
ℓ +

2W𝜏𝐶ℓ

𝑁𝜏
+ W2

𝜏

𝑁𝜏 (𝑁𝜏 − 1)

]
. (1.69)

This expression is tied to the fact that we have excluded the on-diagonal terms 𝑖 = 𝑗 when constructing
(1.67); otherwise, there would be additional contributions to the variance (the estimator would also no
longer be unbiased). Note that since W𝜏 ∝ 1/𝜏 , we have W𝜏/𝑁𝜏 ∝ 1/𝑇 . This means that we can’t ‘win’
by decreasing the length of the data segments𝜏 , only by increasing the total observing time𝑇 . In fact,
writing W𝑇 = W𝜏 (𝜏/𝑇 ) = W𝜏/𝑁𝜏 , we see that in the limit where𝑁𝜏 ≫ 1 (i.e., the limit in which we
minimise the contribution of auto-power from each data segment), (1.69) becomes

Var[𝐶ℓ]𝑆,𝛺 ≃ 2
2ℓ + 1

(𝐶ℓ +W𝑇 )2. (1.70)

This is exactly the standard cosmic variance expression from (1.23), but with𝐶ℓ replaced by𝐶ℓ +W𝑇 . In
section 1.3.7 below, we show that this is in fact the minimum possible variance of any unbiased estimator
for the𝐶ℓ ’s in the presence of shot noise, saturating the Cramér-Rao bound. The estimator (1.67) is
therefore the MVUE in the limit𝑁𝜏 ≫ 1.

At the opposite extreme, for the minimum number of segments,𝑁𝜏 = 2, the variance is nearly twice as
large (taking W𝑇 ≫ 𝐶ℓ),

Var[𝐶ℓ]𝑆,𝛺 ≈ 4
2ℓ + 1

W2
𝑇 . (1.71)

An illustrative example for𝑁𝜏 = 10 is shown in figure 1.14.

The termW𝑇 in (1.70) is the same as that appearing in the mean of the standard estimator, ⟨𝐶 (std)
ℓ

⟩𝑆,𝛺 =

𝐶ℓ +W𝑇 , so this new optimal estimator is still affected by the presence of shot noise; the crucial improve-
ment is that the shot noise only adds to the variance of the estimator, and does not bias the spectrum as in
the standard case.

1 .3 .7 Minimum-variance estimation of the angular power
spectrum

Recall that in section 1.1.4 we used the Gaussian likelihood (1.25) to show that the standard cosmic
variance expression (1.23) saturates the Cramér-Rao bound, making it the MVUE for the angular power
spectrum in the absence of shot noise. Now we include shot noise, and consider the noisy SHCs, 𝛺 𝑖

ℓ𝑚
.

Though we know these are not Gaussian (see appendix B), the Gaussian case is by far the most tractable,
so we consider it first. The joint Gaussian log-likelihood is fully specified by (1.64),

L = − 1
2

∑︁
ℓ𝑚

[
ln(det(2πCℓ)) +𝜴†

ℓ𝑚
C−1
ℓ 𝜴ℓ𝑚

]
, (1.72)
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where𝜴ℓ𝑚 = (𝛺 1
ℓ𝑚
, . . . , 𝛺𝑁𝜏

ℓ𝑚
) is a vector of the noisy SHCs for a given ℓ𝑚, and Cℓ is the corresponding

𝑁𝜏 ×𝑁𝜏 covariance matrix,

Cℓ =

©«
𝐶ℓ +W𝜏 𝐶ℓ · · · 𝐶ℓ

𝐶ℓ 𝐶ℓ +W𝜏 · · · 𝐶ℓ
...

...
. . .

...

𝐶ℓ 𝐶ℓ · · · 𝐶ℓ +W𝜏

ª®®®®®®¬
. (1.73)

One can show that this has determinant det Cℓ = (𝑁𝜏𝐶ℓ +W𝜏 )W𝑁𝜏−1
𝜏 , and inverse

C−1
ℓ =

1
(𝑁𝜏𝐶ℓ +W𝜏 )W𝜏

©«
(𝑁𝜏 − 1)𝐶ℓ +W𝜏 −𝐶ℓ · · · −𝐶ℓ

−𝐶ℓ (𝑁𝜏 − 1)𝐶ℓ +W𝜏 · · · −𝐶ℓ
...

...
. . .

...

−𝐶ℓ −𝐶ℓ · · · (𝑁𝜏 − 1)𝐶ℓ +W𝜏

ª®®®®®®¬
,

(1.74)
using the matrix determinant lemma and the Sherman-Morrison formula, respectively. Taking the second
derivative with respect to𝐶ℓ , we therefore find

Var[𝐶ℓ]𝑆,𝛺 ≥ −
〈
∂2L
∂𝐶 2

ℓ

〉−1

𝑆,𝛺

= −
〈 +ℓ∑︁
𝑚=−ℓ

1
2(𝐶ℓ +W𝑇 )2 − 1

𝑁 2
𝜏 (𝐶ℓ +W𝑇 )3

𝑁𝜏∑︁
𝑖=1

𝑁𝜏∑︁
𝑗=1

𝛺 𝑖∗
ℓ𝑚𝛺

𝑗

ℓ𝑚

〉−1

𝑆,𝛺

=


+ℓ∑︁

𝑚=−ℓ
− 1

2(𝐶ℓ +W𝑇 )2 + 1
𝑁 2
𝜏 (𝐶ℓ +W𝑇 )3

𝑁𝜏∑︁
𝑖=1

𝑁𝜏∑︁
𝑗=1

(
𝐶ℓ + 𝛿𝑖 𝑗W𝜏

)
−1

=

[ +ℓ∑︁
𝑚=−ℓ

1
2(𝐶ℓ +W𝑇 )2

]−1

=
2

2ℓ + 1
(𝐶ℓ +W𝑇 )2,

(1.75)

so the Cramér-Rao bound is the same as before, but with𝐶ℓ → 𝐶ℓ +W𝑇 . This is exactly the variance
we derived for our estimator in (1.70).

Equation (1.75) was derived using the Gaussian log-likelihood (1.72), and one may worry about whether
it holds in the case we are interested in, given that the noisy SHCs do not follow a Gaussian distribution.
However, we have seen that our estimator saturates this bound in the limit𝑁𝜏 ≫ 1. As shown in, e.g.,
Jaynes [340], the only probability distribution that saturates the Cramér-Rao bound under a given set
of constraints (e.g., the constraints on the first two moments in (1.64)) is that which maximises the
entropy under those constraints. The maximum-entropy distribution with fixed mean and variance is
Gaussian [340], so this shows that our estimator must be Gaussian13 in the limit𝑁𝜏 ≫ 1, and that the
calculations above are valid in that limit. (The approach to Gaussianity for𝑁𝜏 ≫ 1 can also be shown
using the central limit theorem.)

13At least, under the shot noise distribution—the LSS distribution is non-Gaussian as discussed above, but we ignore this
complication for now.
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Figure 1.14: Simulated angular power spectra using the standard estimator (1.22) and the new estimator (1.67). The
dark blue line is the chosen ‘true’ spectrum to be estimated, which is here taken as scale-invariant for simplicity,
ℓ (ℓ + 1)𝐶ℓ ≈ constant. The red line is the spectrum of a single random cosmological realisation of the AGWB
(i.e. a single Universe), distributed around the dark blue line according to cosmic variance. The black line is
the shot-noise power W, here set to 10−3 times the monopole. The green line is the spectrum resulting from
the standard estimator (1.22) for a single random realisation from the shot noise ensemble, which follows the
sum of the true spectrum and the shot-noise power,𝐶ℓ +W. The cyan line is the spectrum resulting from the
new estimator (1.67), for the same shot noise realisation, subdivided into𝑁𝜏 = 10 independent segments. The
shaded regions in all cases show the 1𝜎 uncertainty, which for the cyan line is given by (1.69).

1 .4 Summary and outlook

In this chapter, we have investigated the angular power spectrum of the astrophysical gravitational-wave
background from stellar-mass compact binary coalescences in the LIGO/Virgo frequency band, with
the goal of using this signal as a novel probe of late-Universe cosmology. Our key result is the predicted
spectrum shown in figure 1.7, which is constructed using a full-sky mock lightcone galaxy catalogue
based on the Millennium simulation. Applying simple astrophysical recipes, we are able to model the
GW emission from CBCs in all ∼ 5.7 × 106 galaxies in this catalogue, allowing us to construct a full-sky
simulated map of the AGWB (shown in figure 1.6), from which we calculate the corresponding angular
power spectrum (shown in figure 1.7). We find that the predicted anisotropies are much larger than in
early-Universe observables such as the CMB, and that the one-point statistics of the AGWB map are
strongly non-Gaussian, both of which can be understood in terms of the nonlinear gravitational dynamics
that generate the clustering signal. We have also calculated the kinematic dipole anisotropy associated
with the peculiar motion of our detectors with respect to the cosmic rest frame; however, this is an order
of magnitude smaller than the ‘intrinsic’ clustering signal. While our predicted𝐶ℓ spectrum is several
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orders of magnitude below the current sensitivity of LIGO/Virgo, we saw in figure 1.7 that it should be
detected by third-generation ground-based interferometers such as Einstein Telescope.

In section 1.2.3, we considered the impact of CBC population uncertainties on our results. This is an
important factor to account for, as the rates and mass distributions of each class of CBC (BBH, BNS, and
BHNS) are still rather poorly-determined from present observations. We have therefore calculated the
isotropic intensity and angular power spectrum of the AGWB using ∼ 104 different possible sets of BBH
population hyperparameters, as inferred from the first five BBH events detected by LIGO/Virgo. We
found that the isotropic component of the AGWB is very sensitive to the underlying BBH distribution,
varying by more than an order of magnitude, and encoding some interesting information about the shape
of the BH mass function. The angular power spectrum, on the other hand, is fairly insensitive to these
changes in the BBH population once we normalise with respect to the isotropic amplitude, meaning that
our predicted spectrum is robust to these uncertainties. In future work, it would be interesting to carry
out a more thorough and up-to-date study of the dependence of the AGWB and its anisotropies on the
underlying astrophysical modelling, both in terms of the rates and mass distributions of CBCs, and also
in terms of other modelled quantities like the delay-time distribution or the metallicity threshold for BH
formation, which could have more of an impact on the angular power spectrum.

In section 1.3, we have pointed out a serious obstacle to using AGWB anisotropies as a cosmological
probe: shot noise. This is an additional white-noise component of the observed angular power spectrum
caused by the finite sampling of the CBC event rate in each galaxy. Since a typical galaxy has a CBC rate of
∼ Myr−1, one has to observe for an extremely long time to fully sample the large-scale clustering of galaxies
using only GW observations. (There is also an analogous contribution to the shot noise from the finite
number of galaxies in a given spatial volume, but this is many orders of magnitude smaller than both the
temporal shot noise associated with the CBC event rate and the ‘true’ angular power spectrum, so we can
safely neglect it.) We have developed a novel data-analysis method for mitigating the impact of shot noise on
measurements of the𝐶ℓ spectrum, constructing an estimator which provides an unbiased measurement
of the true spectrum, and which attains the minimum possible variance of any such estimator. However,
while this method optimally removes the shot noise offset in our𝐶ℓ measurements, the presence of shot
noise still greatly increases the uncertainty in these measurements, far beyond the level of cosmic variance.

One promising avenue for future work is to focus on cross-correlating the AGWB anisotropies with
other probes of LSS, such as galaxy surveys, rather than simply auto-correlating the AGWB with itself.
There are two key advantages to this: first, since the galaxy clustering signal has already been measured
with very high SNR in galaxy surveys, the cross-correlation search can act as a ‘template’ for the AGWB
anisotropies, making a detection much easier; second, since galaxy surveys have no temporal shot noise,
the total shot noise associated with the cross-correlation spectrum is drastically reduced compared to
that of the auto-correlation spectrum, making it much easier (in principle) to extract interesting new
information about LSS.
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2 Nonlinear gravitational-wave
memory from cosmic strings

In section 0.1.8, we introduced the nonlinear gravitational-wave memory effect—a fascinating prediction
of general relativity in which oscillatory GW signals are generically accompanied by a permanent strain
offset [201], as illustrated in figure 0.3. This effect is sourced by the energy-momentum of the radiated
gravitons [542], thus allowing us to directly probe the ‘ability of gravity to gravitate’ (in the words of Favata
[264]). The nonlinear memory effect also has surprising and illuminating links to other fundamental
aspects of GR in the infrared regime [530], as well as analogous memory effects in other field theories [124,
448], and therefore presents a powerful tool for advancing our theoretical understanding of gravitational
physics.

With these motivations in mind, there has been a significant effort in recent years to calculate [263–
266, 370, 436, 460, 537, 589] and search for [53, 85, 142, 160, 215, 241, 249, 294, 321, 330, 350, 367,
389, 402, 509, 577, 591] the nonlinear memory associated with compact binary coalescences. This focus
on CBCs is unsurprising, as we have seen in section 0.4 that these are the primary observational target
of both interferometer experiments and pulsar timing arrays (PTAs), and are predicted to be abundant
sources of nonlinear memory. However, CBCs are far from the only source of interest in GW astronomy,
and in particular, it would be interesting to expand our scope to study the nonlinear memory emitted
by cosmological sources of GWs. On the one hand, these sources might lead to memory observables
that are distinct from those associated with CBCs, giving us novel signals to search for. On the other
hand, understanding the memory radiated by cosmological sources of GWs might help us to sharpen our
theoretical understanding of these sources.

In this chapter, we calculate the nonlinear GW memory emitted by cosmic strings, which, as we saw in
section 0.3.3, are one of the most important and well-motivated cosmological sources of GWs. We focus
in particular on the memory associated with cusps and kinks, which are the two main mechanisms for GW
emission from cosmic string loops. There are at least two reasons to expect a priori that cusps and kinks
could be important sources of nonlinear memory.1

1. GW memory waveforms tend to be associated with lower frequencies than the primary GW emis-
sion that sources them [265]. This is because the memory grows monotonically over a period of
order the duration of the primary signal, which is typically much longer than the oscillation period

1We note that cosmic string loops can also source significant amounts of linear memory by emitting radiation in the underlying
matter fields they are made from. These effects are ignored by the Nambu-Goto approximation we adopt here, and can only
be resolved by field-theory simulations. In reality, we expect loops to generate a combination of linear and nonlinear memory,
by radiating both matter and GWs. This has recently been demonstrated for collapsing circular cosmic string loops, using
numerical-relativity/field-theory simulations [88].
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of the primary signal. This means that, e.g., massive stellar binary black holes which merge near
the bottom end of the LIGO/Virgo frequency band produce memory signals which are shifted to
lower frequencies, and are thus challenging to detect with LIGO/Virgo. Cosmic string signals, on
the other hand, have durations which are comparable to their oscillation period (i.e. they have a
‘burst-like’ morphology, which is very different to an inspiralling compact binary), meaning that
we should expect the resulting memory signals to have power at similar frequencies to the original
signal. What’s more, the cosmic string signals we consider also have significant power at very high
frequencies, and it is possible that the hereditary nature of the memory effect could transfer some
of this power, enhancing the amplitude of the signal at observable frequencies. (A similar idea
of ‘orphan’ signals—where the memory emission is detectable even though the primary signal is
not—was studied by McNeill et al. [421].)

2. The angular pattern of the GW memory signal on the sky is typically different to that of the primary
GW emission that sources it. (We can see this from the angular integral in equation (0.47).) As we
will see in section 2.1.3, cosmic string cusps and kinks emit GWs in narrow beams, meaning that
only a very small fraction of all cusps and kinks are oriented such that their GWs can be observed.
However, if the associated GW memory signal is more broadly distributed on the sphere, this might
allow us to observe some of the many cusps and kinks whose beams are not oriented towards us.

We find that both expectations are borne out by our calculations below: the GW memory from cusps
and kinks is indeed emitted in a much broader range of directions than the initial beam, and the memory
signal does indeed have a similar frequency profile to the primary signal, with the high-frequency behaviour
of the primary GWs playing an important rôle in determining the strength of the memory effect. In fact,
we show that these two ingredients lead to a divergence in the memory signal from cusps on sufficiently
large loops, potentially signifying a breakdown of the standard weak-field approach for calculating the
GW signal from cusps. We attempt to clarify the root cause of this breakdown, and suggest one tentative
possible resolution in which the cusp collapses to form a primordial black hole, ‘trapping’ the high-
frequency GW emission behind a horizon and thereby preventing the memory from diverging. Other
resolutions are possible however, and ultimately a fully general-relativistic treatment will be required to
understand the true behaviour of cusps.

The remainder of this chapter is structured as follows. We begin in section 2.1 by introducing the
dynamics of cosmic string loops in the Nambu-Goto approximation in the context of linearised GR,
deriving the standard GW waveforms for cusps and kinks, and briefly discussing how these are used to
calculate the GW background emitted by the cosmic string loop network. This first section is a review of
existing work, mainly following the exposition in chapter 6 of Vilenkin and Shellard [567], as well as the
derivation of the cusp and kink waveforms by Damour and Vilenkin [227]. The remainder of the chapter
consists of original work. In section 2.2 we derive some useful formulae for nonlinear memory, building
on equation (0.47) to find expressions for the late-time memory and Fourier-domain memory waveform
in terms of the primary strain signal. In section 2.3, we calculate the nonlinear GW memory signal
associated with cusps, obtaining the simple frequency-domain waveform (2.64); we show that the total
GW energy radiated by this memory signal diverges for Nambu-Goto strings, and regularise this divergence
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by imposing a cutoff at the scale of the string width 𝛿 ; we then go on to consider higher-order memory
effects (the nonlinear GW memory sourced by the memory GWs themselves) and show that accounting
for all such contributions leads to a divergence for large loops, which persists even after applying the
string-width regularisation; finally, we sketch how this divergence is resolved in the cusp-collapse scenario.
In section 2.4 we repeat the memory calculation for kinks, obtaining the leading-order waveform (2.97);
unlike in the cusp case, the memory signal is strongly suppressed at high frequencies due to interference
effects, and no divergence occurs. In section 2.5 we flesh out the cusp-collapse proposal, showing how
it arises naturally from arguments based on the hoop conjecture, and derive some of the properties of
the resulting PBHs. In section 2.6 we study the observable consequences of our results. We find that,
in the scenario where the memory divergence is cured by cusp collapse, the GW emission associated
with the memory is strongly suppressed, and is beyond the reach of current or planned GW searches.
However, we show that the PBHs formed in this scenario form a unique population compared to other
astrophysical and primordial formation mechanisms, making them a ‘smoking gun’ signature of cosmic
strings. Finally, we summarise our results in section 2.7. In appendix C we argue that the nonlinear
memory divergence is associated with a trans-Planckian GW flux, as well as giving some technical details
of the angular distribution of the memory radiation from cusps and kinks.

2.1 Cosmic string loops: dynamics and
gravitational-wave emission

The formation of cosmic strings in the early Universe naturally leads to the production of cosmic string
loops through the self-intersection of long strings. The lengths of these loops span an enormous range of
physical scales; initially created with lengths comparable to the Hubble scale, the emission of GWs causes
loops to gradually shrink to microscopic sizes, eventually unwinding and dispersing once their length is
comparable to the string width scale. In order to understand the GWs emitted through this process, it
is vital to understand the dynamics of individual loops. In principle, we should do this by solving the
equations of motion for the matter fields that constitute the loop, which usually involves running highly
expensive large-scale lattice simulations. However, in practice we can make significant progress analytically
by effacing the microscopic dynamics of the underlying fields, and focusing on the effective, macroscopic
equations of motion for the loops themselves. We do this using the Nambu-Goto approximation, which
we introduce below, following sections 6.1 and 6.2 of Vilenkin and Shellard [567].

2.1 .1 The Nambu-Goto approximation

We saw in section 0.3.3 that the width of a cosmic string is roughly 𝛿 ∼
√︁
ℏ/𝜇, where 𝜇 is the string

tension. Since cosmic strings are formed at such high energies, this is a tiny lengthscale: some seventeen
orders of magnitude smaller than the radius of a proton for GUT-scale strings. By comparison, the
lengths ℓ of the loops we are interested in are astronomically large, ℓ ∼ pc–Gpc. It is therefore natural
for us to treat these loops as purely one-dimensional objects, setting their width 𝛿 to zero. (Note that
this is equivalent to taking ℏ → 0, so we can think of this as a classical limit in which we neglect the
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microphysical degrees of freedom.) This allows us to describe their motion in terms of a two-dimensional
surface in spacetime called the worldsheet.

We cover this surface with coordinates 𝜁 𝐼 , (𝐼 = 0, 1), and describe the location of a given point on the
worldsheet in four-dimensional spacetime in terms of four functions, 𝑋 𝛼 (𝜁 ). The metric that determines
the spacetime interval between points on the worldsheet,𝛾𝐼 𝐽 , is given by restricting the metric of the full
spacetime, 𝑔𝛼𝛽 , down to this surface,

𝛾𝐼 𝐽 ≡ 𝑔𝛼𝛽
∂𝑋 𝛼

∂𝜁 𝐼
∂𝑋 𝛽

∂𝜁 𝐽
. (2.1)

If the strings are formed through the breaking of a local symmetry, then we should be able to encap-
sulate their equations of motion with a local worldsheet action2 of the form 𝑆 =

∫
d2𝜁

√−𝛾L, where
𝛾 ≡ det𝛾𝐼 𝐽 . Since 𝑆 has dimensions of (mass × length), the Lagrangian density L has dimensions of
(mass/length), just like the string tension 𝜇. One obvious choice is therefore to take L = 𝐴𝜇, where
𝐴 is some unknown dimensionless constant. We can fix the appropriate value of 𝐴 by evaluating the
energy-momentum tensor of a string with this action, using the procedure in equation (0.4) to obtain

𝑇 𝛼𝛽 (𝑥) = 2
√−𝑔

δ𝑆

δ𝑔𝛼𝛽
=

𝐴𝜇
√−𝑔

∫
d2𝜁

√−𝛾𝛾 𝐼 𝐽 ∂𝑋
𝛼

∂𝜁 𝐼
∂𝑋 𝛽

∂𝜁 𝐽
𝛿 (4) (𝑥 − 𝑋 ), (2.2)

where we have used the standard identity

δ
√−𝛾 =

1
2
√−𝛾𝛾 𝐼 𝐽δ𝛾𝐼 𝐽 . (2.3)

Evaluating this for the simplest possible case of an infinite straight string (aligned with the 𝑥 1 axis without
loss of generality) on a flat background spacetime, and choosing 𝜁 0 = 𝑥0, 𝜁 1 = 𝑥 1, we find the energy
density

𝑇00(𝑥) = −𝐴𝜇𝛿 (𝑥2 − 𝑋 2)𝛿 (𝑥3 − 𝑋 3). (2.4)

We see that if we set 𝐴 = −1, then this agrees exactly with the energy density of an infinitely thin string of
linear density 𝜇. We thus obtain the Nambu-Goto action

𝑆NG = −𝜇
∫

d2𝜁
√−𝛾 . (2.5)

Since √−𝛾 is the area element on the worldsheet, we can interpret this as the action that minimises the
total worldsheet area.

Note that 𝜇 is not the only quantity we can use to construct the Lagrangian. On dimensional grounds,
we could write down the more general expression

L = −𝜇 + 𝐵ℏ𝜅 +𝐶 ℏ
2𝜅2

𝜇
+ · · · , (2.6)

2In contrast, strings associated with global symmetries are characterised by long-range non-gravitational interactions, and have a
very distinct phenomenology compared to local strings as a result.
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where the𝜅 ’s represent worldsheet curvature invariants, with indices suppressed. However, since a loop
of length ℓ will generally have curvature of order𝜅 ∼ ℓ−2, we see that ℏ𝜅/𝜇 ∼ (𝛿/ℓ)2 ≪ 1, so we can
safely discard all but the leading term, leaving the Nambu-Goto action (2.5).

This approximation breaks down if we consider small enough loops. In particular, a more detailed
analysis shows that field-theoretic effects become important for loops smaller than

ℓmin ≡ 𝛿

𝐺𝜇
≈ ℓPl

(𝐺𝜇)3/2 ≈ 5.1 × 10−19 m ×
(
𝐺𝜇

10−11

)−3/2
. (2.7)

(Recall from section 0.3.3 that GWB searches by LIGO/Virgo [4, 18, 24, 36, 37] and PTAs [131, 388, 593]
constrain the string tension to be𝐺𝜇 ≲ 10−11. We therefore use𝐺𝜇 = 10−11 as a representative value
throughout this chapter, and use this to give numerical values of key physical quantities where relevant.)
These loops are expected to rapidly lose their energy through radiation in the underlying matter fields [316,
418, 524] or through topological unwinding and dispersion [88, 310], and are therefore uninteresting for
our purposes.3

2.1 .2 The flat-space equations of motion

We can find the equations of motion for a Nambu-Goto string by extremising the action (2.5) with respect
to the spacetime coordinates 𝑋 𝛼 (𝜁 ) which, from the worldsheet perspective, are just a set of four scalar
fields. Since our goal is ultimately to use the EoMs to calculate GW signals emitted by loops in linearised
GR, we can specialise to a flat background spacetime, such that

𝛾𝐼 𝐽 = 𝜂𝛼𝛽
∂𝑋 𝛼

∂𝜁 𝐼
∂𝑋 𝛽

∂𝜁 𝐽
. (2.8)

Varying the action then gives

δ𝑆 = −𝜇
2

∫
d2𝜁

√−𝛾𝛾 𝐼 𝐽δ𝛾𝐼 𝐽 = −𝜇𝜂𝛼𝛽
∫

d2𝜁
√−𝛾𝛾 𝐼 𝐽 ∂𝑋

𝛼

∂𝜁 𝐼
∂

∂𝜁 𝐽
δ𝑋 𝛽

= 𝜇

∫
d2𝜁 δ𝑋𝛼

∂

∂𝜁 𝐽

(
√−𝛾𝛾 𝐼 𝐽 ∂𝑋

𝛼

∂𝜁 𝐼

)
,

(2.9)

3There is a long-standing debate within the cosmic string community as to whether matter radiation can be safely neglected for
loops much larger than ℓmin. Field theory simulations of Abelian-Higgs loop networks appear to show that matter radiation
dominates over GW emission on large scales [314, 315, 568], causing the network to decay rapidly into the matter fields,
thus significantly suppressing the expected GWB signal. These results are in tension with theoretical arguments and with
simulations of individual loops, which support the idea that loops much larger than ℓmin can safely be treated in the Nambu-
Goto approximation. It has been suggested that the anomalous matter radiation rates observed in the field-theory network
simulations may be a numerical artefact, tied to the limited dynamical range of these simulations compared to the enormous
separation of scales in the cosmological scenarios of interest. However, this remains an open question. Throughout this
chapter, we assume that field-theory effects are negligible for loops much larger than ℓmin (though we will return to this point in
section 2.3.9). We refer the interested reader to, e.g., section 3.4 of Auclair et al. [87] or section 9.2 of Caprini and Figueroa
[170] for further discussion of this issue.

97



2 Nonlinear gravitational-wave memory from cosmic strings

where we have used equation (2.3) again, and have ignored the boundary term when integrating by parts.4

In order for this to vanish, the coordinates 𝑋 𝛼 must each obey a wave equation,

(2)□𝑋 𝛼 ≡ 1
√−𝛾

∂

∂𝜁 𝐼

(
√−𝛾𝛾 𝐼 𝐽 ∂𝑋

𝛼

∂𝜁 𝐽

)
= 0, (2.10)

where (2)□ is the two-dimensional covariant d’Alembertian operator on the worldsheet. The lack of a
mass term here shows us that the loop’s degrees of freedom propagate at the speed of light.

Thus far, we have kept our worldsheet coordinates completely general, but as with the gauge freedom
in the four-dimensional spacetime coordinates that we dealt with in section 0.1, there is a great deal
of redundancy here. We can simplifying things considerably with a judicious choice of gauge. One
particularly convenient choice is to select 𝜁 such that the worldsheet metric is conformally flat, 𝛾𝐼 𝐽 =
√−𝛾𝜂𝐼 𝐽 ; this is called the ‘conformal gauge’. Equations (2.8) and (2.10) then become

¥𝑋 𝛼 − 𝑋 𝛼 ′′ = 0, ¤𝑋 𝛼 ¤𝑋𝛼 + 𝑋 𝛼 ′𝑋 ′
𝛼 = 0, ¤𝑋 𝛼𝑋 ′

𝛼 = 0, (2.11)

where dots and primes indicate derivatives with respect to 𝜁 0 and 𝜁 1, respectively. These equations are
simplified even further if we now choose the timelike coordinate such that 𝜁 0 = 𝑋 0 ≡ 𝑡 . The loop’s
trajectory is then fully described by a 3-vector 𝑿 (𝑡 , 𝜎), where 𝜎 ≡ 𝜁 1 is the spacelike coordinate in this
gauge, and the EoMs become

¥𝑿 − 𝑿 ′′ = 0, (2.12)

| ¤𝑿 |2 + |𝑿 ′ |2 = 1, (2.13)
¤𝑿 · 𝑿 ′ = 0. (2.14)

Each of these three equations has an intuitive physical interpretation. Since 𝑿 ′ is the tangent vector
pointing along the string, equation (2.14) tells us that ¤𝑿 should be interpreted as the transverse velocity
of the string; we cannot observe velocities along the tangential direction. Rearranging equation (2.13)
shows us that intervals in the worldsheet coordinate 𝜎 are related to intervals in spatial distance |𝑿 | by

d𝜎 =
|d𝑿 |
|𝑿 ′ | =

|d𝑿 |√︁
1 − | ¤𝑿 |2

= 𝛾 |d𝑿 | = d𝐸
𝜇
, (2.15)

where𝛾 = 1/
√︁

1 − | ¤𝑿 |2 is the Lorentz factor of the string segment (not to be confused with the determ-
inant of the worldsheet metric𝛾𝐼 𝐽 ), and d𝐸 = 𝛾𝜇 |d𝑿 | is the energy (kinetic plus rest mass) of the string
segment.5 This shows us that by choosing this gauge, we have scaled 𝜎 such that it is proportional to the
energy at every point along the string, 𝜇 d𝜎 = d𝐸 . Finally, equation (2.12) tells us that the degrees of

4If we had kept a general spacetime metric 𝑔𝛼𝛽 , then we would have picked up an additional term here containing the four-
dimensional Christoffel symbols 𝛤𝜈

𝛼𝛽
. This correction vanishes on a flat spacetime.

5This expression for the energy accords with our intuition from point particles in flat space, but we also could have derived it
from the energy momentum tensor (2.2).
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2.1 Cosmic string loops: dynamics and gravitational-wave emission

freedom propagating tangentially along the string obey a wave equation and propagate at the speed of
light. We can make this more explicit by decomposing 𝑿 into left- and right-moving modes,

𝑿 (𝑡 , 𝜎) = 1
2
[𝑿 +(𝜎+) + 𝑿 −(𝜎−)], 𝜎± ≡ 𝑡 ± 𝜎. (2.16)

This decomposition is always possible for any solution to equation (2.12), and also obeys equations (2.13)
and (2.14) if we set

| ¤𝑿 + | = | ¤𝑿 − | = 1, (2.17)

showing that both modes do indeed propagate at the speed of light. (Note that differentiating 𝑿 ± with
respect to time gives the same result as differentiating with respect to their argument, 𝜎±.)

Since we are interested in cosmic string loops, 𝑿 must be periodic in 𝜎 , with some finite periodicity
length ℓ. From equation (2.15), we see that this length is set by the total energy of the loop, since
𝐸 = 𝜇

∫ ℓ

0 d𝜎 = 𝜇ℓ. This implies that ℓ must be constant over time (neglecting for now energy loss from
GW radiation), so we call it the invariant length. Note that this differs from the coordinate length of the
loop,

𝐿 =

∫ ℓ

0
d𝜎 |𝑿 ′ | =

∫ ℓ

0
d𝜎

√︃
1 − | ¤𝑿 2 | ≤ ℓ, (2.18)

which fluctuates over time, undergoing relativistic length contraction due to the motion of the loop.

The left-right decomposition (2.16) makes it clear that 𝑿 ± must also be periodic in 𝜎± ∈ [0, ℓ), which
in turn implies that 𝑿 is periodic in time as well as space. In fact, the period of the loop’s motion over
time is ℓ/2 rather than ℓ, since equation (2.16) gives 𝑿 (𝑡 + ℓ/2, 𝜎 + ℓ/2) = 𝑿 (𝑡 , 𝜎). This shows us that
it’s not just modes moving along the loop that are relativistic, but that the loop itself must oscillate at
relativistic speeds. Indeed, using equations (2.12) and (2.13) we see that the loop’s rms velocity, averaged
over its length and over an oscillation period, is given by

𝑣2
rms ≡

〈
| ¤𝑿 |2

〉
ℓ
=

〈
𝑿 · ¥𝑿

〉
ℓ
= ⟨𝑿 · 𝑿 ′′⟩ℓ =

〈
|𝑿 ′ |2

〉
ℓ
=

〈
1 − | ¤𝑿 |2

〉
ℓ
= 1 − 𝑣2

rms,

⟨· · ·⟩ℓ ≡
∫ ℓ

0

d𝜎
ℓ

∫ ℓ/2

0

d𝑡
ℓ/2

(· · · ),
(2.19)

where periodicity allows us to drop the boundary terms when integrating by parts. We therefore have
𝑣rms = 1/

√
2; i.e., the loop moves at ≈ 71% the speed of light on average.

Cusps and kinks

Another way of understanding equation (2.19) is to think about the net velocity of the loop as the
average of the velocity vectors of the left- and right-moving modes, ¤𝑿 = ( ¤𝑿 + + ¤𝑿 −)/2. Since we saw
in equation (2.17) that these each have unit magnitude at all times and at all points on the loop, the net
velocity depends only on the relative velocity of the two modes. If we define 𝜃± ≡ cos−1( ¤𝑿 + · ¤𝑿 −) as the
angle between the two velocity vectors, we see that the net velocity is given by

| ¤𝑿 |2 =
1
4

(
| ¤𝑿 + |2 + 2 cos 𝜃± + | ¤𝑿 − |2

)
=

1 + cos 𝜃±
2

. (2.20)
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x̂ ŷ
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Figure 2.1: The left- and right-moving mode velocities ¤𝑿 ± for a given loop configuration can be drawn as two
curves on the Kibble-Turok sphere. These curves generically intersect each other, giving rise to cusps. Note that
the curves drawn here are continuous, and therefore correspond to loops which have no kinks.

We thus reproduce equation (2.19) if cos 𝜃± averages to zero over an oscillation period (i.e., the two mode
velocities are just as likely to be aligned as anti-aligned).

From equation (2.20), we see that it is possible for the loop itself to move at the speed of light if we can
arrange for both the left- and right-moving modes to be moving in the same direction, ¤𝑿 + = ¤𝑿 − (since
then 𝜃± = 0). A point on the worldsheet where such a situation occurs is called a cusp [316, 554, 565, 567].
At first glance, cusps seem finely-tuned and unlikely to occur for generic loop trajectories. However, while
it is true that a randomly-selected point on the worldsheet is unlikely to be a cusp, the occurrence of a
cusp somewhere on the loop during the course of an oscillation period is actually very generic. To see this,
consider the possible forms that the functions ¤𝑿 ± can take. These are both periodic 3-vector functions
with unit magnitude, so we can draw them as closed curves on the unit 2-sphere (as illustrated in figure 2.1;
this is often referred to as the Kibble-Turok sphere). Since

∫ ℓ

0 d𝜎± ¤𝑿 ± = 𝑿 ±(ℓ) − 𝑿 ±(0) = 0, neither
of these curves can reside entirely in one hemisphere, as the integral

∫ ℓ

0 d𝜎± ¤𝑿 ± would then be nonzero.
As a result, it is quite hard for the two curves to avoid each other completely, and there is generically at
least one point at which they intersect, with each intersection corresponding to a cusp.

One way in which the two curves can more easily avoid intersecting is if they possess discontinuities;
i.e., if there are values of 𝜎± at which ¤𝑿 ± jumps between two disconnected points on the unit sphere.
Physically this corresponds to a discontinuity in the loop’s tangent vector 𝑿 ′, at which two smooth string
segments are joined at a sharp angle.6 These features are called kinks, and occur very naturally due to the
string self-intersections from which loops are created. Each kink is associated with a particular fixed value

6Of course, such a sharp feature is only possible in our idealised Nambu-Goto setup, where the string has zero width. In the full
field-theoretic description, kinks correspond to points where the loop’s tangent vector changes significantly over an interval of
order the string width 𝛿 , but in such a way that the matter fields are everywhere continuous.
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2.1 Cosmic string loops: dynamics and gravitational-wave emission

of 𝜎+ or 𝜎−, meaning that the kink propagates around the loop at the speed of light, with the direction of
travel depending on whether the discontinuity is associated with a left- or a right-moving mode.

In the following section, we show that cusps and kinks are the two main mechanisms through which
loops radiate GWs.

2.1 .3 Gravitational-wave emission from loops

We now turn to the loop’s GW emission, following the derivation of the cusp and kink waveforms first
given by Damour and Vilenkin [227]. Using the results from section 0.1.6, we can write the Fourier
transform of the complex strain waveformℎ = ℎ+ − iℎ× emitted by the loop in direction 𝒓 as

ℎ̃ ( 𝑓 , 𝒓 ) = 2𝐺
𝑟

[
𝑒+,𝑖 𝑗 (𝒓 ) − i𝑒×,𝑖 𝑗 (𝒓 )

]
𝑇𝑖 𝑗 ( 𝑓 , 𝑓 𝒓 ), (2.21)

where𝑇𝑖 𝑗 is the spacetime Fourier transform of the energy-momentum tensor,

𝑇𝑖 𝑗 ( 𝑓 ,𝒌 ) =
∫

d𝑡
∫

d3𝒙 e−2πi( 𝑓 𝑡−𝒌 ·𝒙 )𝑇𝑖 𝑗 (𝑡 , 𝒙 ). (2.22)

In our case, this is given by evaluating equation (2.2) in the conformal gauge,

𝑇𝑖 𝑗 (𝑡 , 𝒙 ) = 𝜇
∫ ℓ

0
d𝜎 𝛿 (3) (𝒙 − 𝑿 )

(
¤𝑋𝑖 ¤𝑋 𝑗 − 𝑋 ′

𝑖 𝑋
′
𝑗

)
,

𝑇𝑖 𝑗 ( 𝑓 ,𝒌 ) = 𝜇
∫ ℓ/2

0
d𝑡

∫ ℓ

0
d𝜎 e−2πi( 𝑓 𝑡−𝒌 ·𝑿 )

(
¤𝑋𝑖 ¤𝑋 𝑗 − 𝑋 ′

𝑖 𝑋
′
𝑗

)
,

(2.23)

where we have restricted the time integral to 𝑡 ∈ [0, ℓ/2], as we are interested in the GW emission
from a single oscillation period. We can simplify this by writing everything in terms of the left- and
right-moving modes defined in equation (2.16). Using 𝑿 ′

± = ± ¤𝑿 ±, and changing the area element to
d𝜎+ d𝜎− = 2 d𝑡 d𝜎 , we see that the energy-momentum tensor can be factorised into two separate integrals
corresponding to the left- and right-moving parts, such that the waveform is given by

ℎ̃ ( 𝑓 , 𝒓 ) = 𝐺𝜇

𝑟
(𝑒+𝑖 𝑗 − i𝑒×𝑖 𝑗 )I

𝑖
+I 𝑗

− , I𝑖
± ( 𝑓 , 𝒓 ) ≡

∫ +ℓ/2

−ℓ/2
d𝜎± e−πi𝑓 (𝜎±−𝒓 ·𝑿 ±) ¤𝑋 𝑖

±. (2.24)

Since the loop’s motion is periodic, the GW emission described by equation (2.24) is not a continuous
spectrum, but is concentrated at the discrete set of frequencies 2𝑛/ℓ, where 𝑛 is a nonzero integer, and
2/ℓ is the fundamental mode of the loop. This distinction is unimportant in most cases however, as the
fundamental mode corresponds to a very low frequency for the loop sizes ℓ ∼ pc–Gpc we are interested
in, 2/ℓ ≈ 2 × 10−8 Hz × (ℓ/pc)−1, meaning that we are typically interested in very high harmonics
|𝑛 | ≫ 1, particularly for interferometers like LIGO/Virgo. In this high-frequency regime, the emission
modes of the loop are so closely spaced that they effectively form a continuous spectrum. The downside
of this is that the integrals I𝑖

± are highly oscillatory in this regime, meaning that the GW emission typically
falls off exponentially with frequency.
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2 Nonlinear gravitational-wave memory from cosmic strings

There are two key ways in which this exponential suppression can be avoided, giving a strong high-
frequency GW signal [227]:

1. If there is a stationary point in the phase, such that ∂/∂𝜎± (𝜎± − 𝒓 · 𝑿 ±) = 0 for some value of
𝜎±. This corresponds to having ¤𝑿 ± = 𝒓 , which occurs whenever the left-/right-moving mode in
question is propagating directly towards the observer.

2. If there is a discontinuity in the integrand or one of its derivatives. Since 𝑿 ± itself must be continu-
ous (recall that cosmic strings are topologically forbidden from having open ends), the strongest
discontinuity that we can allow is a jump in the first derivative ¤𝑿 ±, i.e., a kink.

In order to prevent the GW strain (2.24) from decaying exponentially, we need one or the other of these
conditions to be satisfied for both the left- and right-moving modes. There are three possible situations
that achieve this:

Cusp: Both integrals I𝑖
± possess a stationary point along the same propagation direction 𝒓 c. This corres-

ponds to having 𝒓 c = ¤𝑿 + = ¤𝑿 −; in other words, a cusp pointing in the 𝒓 c direction.

Kink: One integral has a stationary point along the GW propagation direction 𝒓 , and the other has a
kink. This corresponds to a point in the loop’s oscillation at which the kink is travelling in the 𝒓
direction.

Kink-kink collision: Both integrals have kinks. We can then interpret the emitted GWs as being due to
a kink-kink collision. Since neither kink is associated with a particular direction 𝒓 (as there is no
stationary-phase requirement), the resulting GW emission must be isotropic.

We calculate the corresponding waveform for each of these cases below.

Cusps

Let’s look at the cusp case first. Here we can use the stationary-phase approximation to evaluate the integ-
rals I𝑖

± , focusing on a small interval in𝜎± near the cusp. This is useful because the gauge conditions (2.17)
constrain the form of the functions 𝑿 ±(𝜎±) in a small region near the cusp, allowing us to derive results
that are generic to all cusps. Choosing our coordinates so that the cusp occurs at 𝜎± = 0, we can write
the position and velocity of the left- and right-moving modes as Taylor expansions around this point,

𝑿 ± = 𝒓 c𝜎± + 1
2
¥𝑿 ±𝜎

2
± + 1

6
𝑿 ±𝜎

3
± + · · · , ¤𝑿 ± = 𝒓 c + ¥𝑿 ±𝜎± + 1

2
𝑿 ±𝜎

2
± + · · · , (2.25)

with all the derivatives evaluated at 𝜎± = 0. We can then apply the gauge conditions (2.17) order-by-order
to find

𝒓 c · ¥𝑿 ± = 0, 𝒓 c · 𝑿 ± = −| ¥𝑿 ± |2. (2.26)

As an example of how this determines the properties of the loop near the cusp, consider the loop’s position
at time 𝑡 = 0,

𝑿 (0, 𝜎) = 1
2
[𝑿 +(𝜎) + 𝑿 −(−𝜎)] =

1
4
( ¥𝑿 + + ¥𝑿 −)𝜎2 + 1

12
(𝑿 + − 𝑿 −)𝜎3 + · · · . (2.27)
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Figure 2.2: Diagram of a string segment (blue) near a cusp, showing the tangent vector 𝑿 ′ and velocity ¤𝑿 at the
cusp. Note the 𝑦 ∝ 𝑥2/3 shape of this curve (where 𝑥 and 𝑦 are the distances of the loop from the cusp in the
directions parallel to and transverse to the cusp velocity, respectively), which is characteristic of all cusps. As we
show below, the emitted GWs (red) are beamed along the direction of the cusp velocity.

Using the constraints in equation (2.26), we see that the loop’s distance from the cusp in the direction
parallel to ¤𝑿 (call this 𝑥) is related to the distance in the transverse direction (call this 𝑦 ) by 𝑦 ∝ 𝑥2/3. This
gives rise to a universal shape for the string segment near the cusp, which is illustrated in figure 2.2. The
proportionality constant relating 𝑥 and 𝑦 depends on the values of the derivatives ¥𝑿 ±, 𝑿 ± at the cusp,
but we can generically expect it to include a factor of ℓ1/3 on dimensional grounds, as the loop length ℓ is
the only relevant lengthscale in the problem (here it is hidden in the values of the derivatives, as we discuss
below when estimating | ¥𝑿 ± |). In other words, this universal cusp shape is scaled up and down according
to the total length of the loop; a slightly counterintuitive idea, given that the cusp is a small, localised
feature which one might not expect to ‘know’ about the rest of the loop, but one which is important later
in this chapter.

Returning now to the GW signal emitted by a cusp, we see that equation (2.26) implies that the leading
contribution to the phase factor in equation (2.24) is of order 𝜎3

±,

𝜎± − 𝒓 c · 𝑿 ± = − 1
2
𝒓 c · ¥𝑿 ±𝜎

2
± − 1

6
𝒓 c · 𝑿 ±𝜎

3
± + · · · = 1

6
| ¥𝑿 ± |2𝜎3

± + · · · . (2.28)

We therefore write

I𝑖
± ( 𝑓 , 𝒓 c) ≃

∫ +ℓ/2

−ℓ/2
d𝜎±

(
𝑟 𝑖∗ + ¥𝑋 𝑖

±𝜎±
)

exp
(
−πi

6
𝑓 | ¥𝑿 ± |2𝜎3

±

)
. (2.29)

Notice that the leading-order term here is directed along the line of sight, I𝑖
± ∝ 𝑟 𝑖∗ , and therefore vanishes

when contracted with the TT polarisation tensors 𝑒𝐴
𝑖 𝑗

. This means that actual leading-order contribution
to the GW signal is given by

I𝑖
± ( 𝑓 , 𝒓 c) ≃ ¥𝑋 𝑖

±

∫ +ℓ/2

−ℓ/2
d𝜎± 𝜎± exp

(
−πi

6
𝑓 | ¥𝑿 ± |2𝜎3

±

)
≃

¥𝑋 𝑖
±

| ¥𝑿 ± |4/3
(π𝑓 /6)−2/3

∫
d𝑢 𝑢 e−i𝑢3

, (2.30)
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where we have rewritten the integral in terms of the dimensionless variable𝑢 ≡ 𝜎±(π𝑓 | ¥𝑿 ± |2/6)1/3. We
have assumed here that the GW frequency is positive; for negative frequencies, we can replace 𝑓 with | 𝑓 |
and take the complex conjugate of the integral.

We can estimate | ¥𝑿 ± | by noting that generic solutions for 𝑿 ± can be written as a sum of Fourier modes,
𝑿 ± =

∑∞
𝑛=1 𝑿

(𝑛)
± exp(2πi𝑛𝜎±/ℓ). Consider first the unrealistic case of a solution with a single mode, 𝑛.

Since | ¤𝑿 ± | = 1, we would then have | ¥𝑿 ± | = 2π𝑛/ℓ. For a more realistic solution, there are cross-terms
from various different modes, but in general we can write | ¥𝑿 ± | = 2π�̄�±/ℓ, where the ‘effective mode
number’ �̄�± is of order unity for smooth strings, and becomes larger for very wiggly strings. (One generally
expects gravitational backreaction to dampen higher-order modes, which would dynamically drive �̄�±

towards smaller values over time.) We therefore write𝑢 = 𝜎±π(�̄�±/ℓ)2/3(2𝑓 /3)1/3.
Note that we neglected the limits of the 𝑢 integral in equation (2.30). These are given by |𝑢 | =

π�̄�2/3
± ( 𝑓 ℓ/12)1/3, and are thus much greater than unity, since we are interested in the high-frequency

regime 𝑓 ℓ ≫ 1. As such, we can safely extend the limits of the integral to infinity, since the final value is
dominated by the region |𝑢 | ≲ 1 anyway. This allows us to evaluate the integral analytically, giving∫ +∞

−∞
d𝑢 𝑢 e−i𝑢3

= − 2πi
3𝛤 (1/3) , (2.31)

where 𝛤 (𝑧) is the Euler Gamma function.
Going back to equation (2.24), we therefore find that the cusp waveform is given at high frequencies

| 𝑓 |ℓ ≫ 1 by7

ℎ̃c( 𝑓 , 𝒓 c) ≃ −𝐴c
𝐺𝜇ℓ2/3

𝑟 | 𝑓 |4/3 (𝑒+𝑖 𝑗 − i𝑒×𝑖 𝑗 )𝜏
𝑖
+𝜏

𝑗
−, 𝐴c ≡

4 × (2/3)2/3

(�̄�+�̄�−)1/3𝛤 2(1/3)
≲ 0.4253, (2.32)

where �̂�± ≡ ¥𝑿 ±/| ¥𝑿 ± | are two unit vectors transverse to the GW propagation direction. Each of these is
defined by some angle 𝜃± in the transverse plane, and it is straightforward to show that

(𝑒+𝑖 𝑗 − i𝑒×𝑖 𝑗 )𝜏
𝑖
+𝜏

𝑗
− = e−2i(𝜃++𝜃−) , (2.33)

so that this factor can be absorbed into our choice of coordinates by performing a polarisation rotation, c.f.
equation (0.26). The fact that we can do this indicates that the cusp’s GW emission is linearly polarised.

Now that we know the GW signal emitted along the direction of the cusp, 𝒓 c, we can ask how this
emission is modified if there is some nonzero angle 𝜃 between this direction and the observer’s line of
sight 𝒓 . If 𝜃 is too large, then the phase in I𝑖

± will no longer be stationary, and the GW emission will be
exponentially suppressed at high frequencies. The question then is, how small does this angle have to be
for the observer to still see the much slower 𝑓 −4/3 power law decay? We can obtain a rough answer to this
question by rewriting the phase (2.28) with a small inclination angle 𝜃 ≡ cos−1(𝒓 c · 𝒓 ),

𝜎± − 𝒓 · 𝑿 ± =
1
2
𝜃 2𝜎± − 1

2
𝜹 · ¥𝑿 ±𝜎

2
± + 1

6
| ¥𝑿 ± |2𝜎3

± + · · · , (2.34)

7Note that the value of 𝐴c given here is a factor of two smaller than the value of 0.8507 quoted by Damour and Vilenkin [227].
This is because we work in terms of the complex strainℎ instead of the metric perturbationℎ𝑖 𝑗 , with the missing factor of two
being carried by the normalisation of the polarisation tensors 𝑒𝐴

𝑖 𝑗
.
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where 𝜹 ≡ 𝒓 − 𝒓 c is a 3-vector pointing from the cusp direction to the line of sight, with magnitude
|𝜹 | =

√
2 − 2 cos 𝜃 ≃ 𝜃 . The first two terms here are the ones that cause the rapid oscillations that spoil

the power-law frequency scaling. We can therefore estimate the angle 𝜃 at which this power-law scaling
fails by setting the first and third terms equal to each other, and setting 𝜎± = (π𝑓 | ¥𝑿 ± |2/6)−1/3 such that
the dummy variable 𝑢 is equal to unity (since we saw that the integral is dominated by |𝑢 | ≲ 1). This
defines the cusp’s beaming angle,

𝜃b( 𝑓 ) ≃
22/3

31/6 ( | 𝑓 |ℓ)
−1/3, (2.35)

which is necessarily very small, since we have | 𝑓 |ℓ ≫ 1. (Note that we have set the effective mode numbers
�̄�± to unity here—these can increase the size of the beam like 𝜃b ∼ �̄�

1/3
± for very wiggly strings.)

Our final expression for the cusp waveform is therefore

ℎ̃c( 𝑓 , 𝒓 ) ≃ 𝐴c
𝐺𝜇ℓ2/3

𝑟 | 𝑓 |4/3 𝛩 (𝒓 c · 𝒓 − cos 𝜃b)𝛩 ( | 𝑓 | − 2/ℓ), (2.36)

where𝛩 (𝑥) is the Heaviside step function. We approximate the beam with a sharp, step-function cutoff,
as the gradual onset of the exponential frequency damping is somewhat difficult to calculate precisely. We
also include a second step function, to remind us that this expression should not be applied below the
fundamental frequency 2/ℓ. Strictly speaking we should only use equation (2.36) in the high-frequency
regime, but in practice we expect that this underestimates the low-frequency GW emission, so we can
safely use it as a conservative proxy for the GW emission across the whole frequency range (particularly as
our results for the corresponding GW memory are dominated by the high-frequency emission).

Using equation (2.36), we can calculate the total GW energy radiated by the cusp. It is useful to
normalise this against the total energy of the loop, 𝜇ℓ, to give the dimensionless energy spectrum

𝜖 ( 𝑓 , 𝒓 ) ≡ 1
𝜇ℓ

d𝐸gw

d(ln 𝑓 ) d2𝒓
=
π𝑟 2 𝑓 3

4𝐺𝜇ℓ

(
|ℎ̃ ( 𝑓 , 𝒓 ) |2 + |ℎ̃ (−𝑓 , 𝒓 ) |2

)
. (2.37)

For cusps, this is given by

𝜖c( 𝑓 , 𝒓 ) ≃
π

2
𝐴2

c𝐺𝜇( 𝑓 ℓ)1/3𝛩 (𝒓 c · 𝒓 − cos 𝜃b)𝛩 ( 𝑓 − 2/ℓ), (2.38)

which diverges at high frequencies for observers in the beaming direction, 𝒓 = 𝒓 c. This divergence is
‘hidden’ by the beaming angle 𝜃b, which shrinks fast enough with frequency to ensure that the total
radiated energy is finite. We can see this by defining the isotropically-averaged energy spectrum,

𝜖 ( 𝑓 ) ≡
∫
𝑆2

d2𝒓 𝜖 ( 𝑓 , 𝒓 ), (2.39)

which gives us an extra factor of π𝜃 2
b , so that

𝜖c( 𝑓 ) ≃ (2/3)1/3(π𝐴c)2𝐺𝜇( 𝑓 ℓ)−1/3𝛩 ( 𝑓 − 2/ℓ). (2.40)
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2 Nonlinear gravitational-wave memory from cosmic strings

Integrating over frequency, we define the total fraction of the loop’s energy that is radiated as

E ≡
∫ ∞

0

d𝑓
𝑓
𝜖 ( 𝑓 ), (2.41)

which ends up being of order𝐺𝜇 for cusps,

Ec ≃ 32/3(π𝐴c)2𝐺𝜇 ≪ 1. (2.42)

As we will see below, however, the high-frequency divergence in equation (2.38) can still cause problems
elsewhere due to the nonlinear nature of GR. Indeed, this divergence lies at the heart of the divergent
behaviour we will encounter in the nonlinear memory waveforms.

Kinks

Now let us consider the kink case. Suppose one of the left/right mode velocities ¤𝑿 ± jumps discontinuously
from �̂� 1 to �̂�2 at some value of 𝜎±. The oscillatory integral is then dominated by this jump, giving [227]

I𝑖
± ≃ i

π𝑓

(
�̂�𝑖2

1 − �̂�2 · 𝒓
−

�̂�𝑖1
1 − �̂� 1 · 𝒓

)
. (2.43)

While this expression diverges if either �̂� 1 or �̂�2 points along the line of sight 𝒓 , we always project onto
the transverse plane by contracting with the polarisation tensors 𝑒𝐴

𝑖 𝑗
, meaning that the GW strain is always

finite. Replacing one copy of the stationary-phase integral (2.30) with this kink integral, and neglecting a
factor of order unity which depends on the 3-vectors �̂� 1 and �̂�2, we therefore obtain the kink waveform

ℎ̃k ( 𝑓 , 𝒓 ) ≃ 𝐴k
𝐺𝜇ℓ1/3

𝑟 | 𝑓 |5/3 𝛩 (𝒓 k · 𝒓 − cos 𝜃b)𝛩 ( | 𝑓 | − 2/ℓ), (2.44)

where 𝐴k ≡
√
𝐴c/π ≲ 0.2076. The corresponding energy spectrum is

𝜖k ( 𝑓 , 𝒓 ) ≃
π

2
𝐴2

k𝐺𝜇( 𝑓 ℓ)
−1/3𝛩 (𝒓 k · 𝒓 − cos 𝜃b)𝛩 ( 𝑓 − 2/ℓ), (2.45)

which, unlike the cusp spectrum, converges at high frequencies, even when the beam points exactly along
the line of sight, 𝒓 = 𝒓 k.

We see that the kink waveform is remarkably similar to the cusp waveform, in that it is also linearly
polarised and is also characterised by a power-law falloff in frequency, although the ∼ 𝑓 −5/3 falloff here is
slightly steeper than the ∼ 𝑓 −4/3 we found for cusps. The beaming angle 𝜃b is the same as before, as it is
still set by the range of directions 𝒓 in which the stationary-phase approximation holds.

One very important difference is that kinks are persistent features of cosmic string loops, as opposed
to cusps, which are transient; this is because cusps are associated with a single value of both 𝜎+ and 𝜎−
at which 𝑿 + = 𝑿 −, which determines a fixed time 𝑡 = (𝜎+ + 𝜎−)/2, while kinks have only one of the
two coordinates 𝜎± fixed, with the corresponding locus in (𝑡 , 𝜎) describing the propagation of the kink
around the loop over time. As a result, the cusp waveform is associated with a single beaming direction

106



2.1 Cosmic string loops: dynamics and gravitational-wave emission

𝒓 c, while the kink waveform is associated with a one-dimensional ‘fan’ of directions defined by the kink’s
propagation direction as it travels around the loop. The unit vector 𝒓 k that appears in equation (2.44) is
therefore defined as the direction in this ‘fan’ which passes closest to the observer’s line of sight 𝒓 . Here we
assume that the length of the curve traced out by this fan on the unit sphere is comparable to the sphere’s
circumference, ∼ 2π. As a result, integrating equation (2.45) over the sphere picks up a factor of 4π𝜃b

rather than π𝜃 2
b , giving

𝜖k ( 𝑓 ) ≃
25/3

31/6 (π𝐴k)2𝐺𝜇( 𝑓 ℓ)−2/3𝛩 ( 𝑓 − 2/ℓ), Ek ≃ 35/6(π𝐴k)2𝐺𝜇. (2.46)

Note that we could repeat this calculation to find the GWs radiated by milder discontinuities in the
loop, due to jumps in higher-order derivatives of 𝑿 ±. However, for each order of the derivative we expect
the waveform to be reduced by a factor of ∼ 1/(| 𝑓 |ℓ) ≪ 1, so that these features are less important than
kinks in the high-frequency regime we are interested in.

Kink-kink collisions

Finally, the waveform for a kink-kink collision is given by setting both the integrals I𝑖
± equal to equa-

tion (2.43). This gives

ℎ̃kk ( 𝑓 , 𝒓 ) ≃
𝐺𝜇

𝑟π2 𝑓 2𝛩 ( | 𝑓 | − 2/ℓ). (2.47)

Since the left-moving kink is associated with a fixed value of 𝜎+, and the right-moving kink with a fixed
value of 𝜎−, their collision occurs at a single point (𝜎+, 𝜎−) and is therefore transient like a cusp, in
contrast with the persistent GW emission from each kink individually. As mentioned previously, the
resulting emission is perfectly isotropic, as there is no stationary-phase requirement and therefore no
beaming direction. As a result, kink-kink collisions produce no nonlinear memory, since the angular
integral in equation (0.47) has no TT part for this isotropic emission. For this reason, kink-kink collisions
are unimportant for much of the rest of this chapter.

For completeness, we include the energy spectrum associated with the waveform (2.47),

𝜖kk ( 𝑓 , 𝒓 ) =
1

4π
𝜖kk ( 𝑓 ) ≃

𝐺𝜇

2π3 𝑓 ℓ
, Ekk ≃ 𝐺𝜇

π2 . (2.48)

The gravitational-wave background from loops

We can calculate the GWB spectrum generated by cusps, kinks, and kink-kink collisions on a cosmic
population of loops using the ‘Phinney formula’ from section 0.2.4. Of the two key ingredients that go
into this formula, we have already calculated one: the energy spectra of each GW emission mechanism.
The other ingredient is the comoving rate density R, which we can factorise into the comoving number
density of loops, 𝑛, and the mean GW burst rate from each loop. (Note that these are all functions of the
loop length ℓ.) Since we know that each loop’s oscillation period is given by ℓ/2, we can write the latter
in terms of the mean number of cusps, kinks, and kink-kink collisions per oscillation, which we denote by
𝑁𝑖 , 𝑖 ∈ {c, k, kk}. Determining these numbers for a realistic loop network is somewhat challenging; the
number of cusps per oscillation𝑁c is thought to be of order unity, while the number of kinks𝑁k could
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2 Nonlinear gravitational-wave memory from cosmic strings

in principle be much larger. The number of kink-kink collisions is always𝑁kk = 𝑁 2
k /4, since each of the

𝑁k/2 left-moving kinks will collide with all of the𝑁k/2 right-moving kinks once per oscillation period.
Putting all this together, the Phinney formula (0.65) gives

𝛺 ( 𝑓 ) = 16π𝐺𝜇
3𝐻 2

0

∑︁
𝑖 ∈{c,k,kk}

𝑁𝑖

∫
d𝑡 𝑎 (𝑡 )

∫
dℓ 𝑛 (ℓ, 𝑡 )𝜖𝑖 ( 𝑓 /𝑎 (𝑡 )), (2.49)

where we have replaced the redshift integral with an integral over cosmic time 𝑡 , with 𝑎 (𝑡 ) the FLRW
scale factor.

The loop network usually evolves toward a scaling solution [113], such that the number density is given
by

𝑛 (ℓ, 𝑡 ) = 𝑎3(𝑡 )
𝑡 4 F (𝛾 ), (2.50)

where the dimensionless function F depends on the loop length and on cosmic time only through their
dimensionless ratio𝛾 ≡ ℓ/𝑡 . There are three widely-used models for the distribution function:

1. The original ‘one-scale’ model of Vilenkin and Shellard [567] (see also Siemens et al. [514]);

2. The model of Blanco-Pillado et al. [130], which is calibrated to numerical simulations;

3. The model of Ringeval et al. [483] (see also Lorenz et al. [396]), which is calibrated to a different
set of simulations, and includes additional modelling of the effects of backreaction on the loops.

Following Auclair et al. [87], we refer to these as ‘model 1’, ‘model 2’, and ‘model 3’ respectively. Model 1
is widely considered obsolete, as it is incompatible with both of the main sets of Nambu-Goto network
simulations [130, 483]; however, we include it here for completeness.

2.2 Nonlinear memory waveforms

Now that we have derived the standard cusp and kink waveforms, equations (2.36) and (2.44), we are
almost ready to calculate the nonlinear memory associated with each of these. Before we start, we develop
here some useful expressions—based on the nonlinear memory formula in equation (0.47)—which will
allow us to carry out these calculations entirely in the frequency domain.

We work in terms of the complex GW strainℎ (𝑡 , 𝒓 ) = ℎ+ − iℎ× throughout. We distinguish between
the primary, oscillatory strain signal (sourced at linear order) and the additional strain due to the nonlinear
memory effect by writing these asℎ (0) andℎ (1) respectively, reservingℎ (𝑛) with𝑛 ≥ 2 for the ‘memory of
the memory’ and other higher-order memory contributions, which we discuss in sections 2.3.7 and 2.4.6.
The leading nonlinear memory correction term can be written in gauge-invariant form as [265, 542]

ℎ (1) (𝑡 , 𝒓 ) = 2𝐺
𝑟

∫ 𝑡

−∞
d𝑡 ′

∫
𝑆2

d2𝒓 ′
(𝑒+,𝑖 𝑗 − i𝑒×,𝑖 𝑗 )𝑟 ′

𝑖
𝑟 ′
𝑗

1 − 𝒓 · 𝒓 ′
d𝐸 (0)

gw

d𝑡 ′ d2𝒓 ′ , (2.51)

which reduces to equation (0.47) in the limit 𝑡 → +∞. Since the integral is over the (non-negative) GW
energy flux from the source, d𝐸 (0)

gw /d𝑡 d2𝒓 , we generically obtain a nonzero memory correction which
grows monotonically with time while the source is ‘on’. By projecting onto the GW polarisation tensors

108



2.2 Nonlinear memory waveforms

we ensure that only the TT part of the angular integral contributes; this TT part vanishes if the emitted
flux is exactly isotropic, but is generically non-vanishing for anisotropic emission.

Note that equation (2.51) corresponds to just one of many quadratic terms that appear on the right-hand
side of the relaxed Einstein field equation [263, 449]. While this term has received particular attention
in the literature due to its pleasing intuitive interpretation as the nonlinear gravitational counterpart to
the linear GW memory effect, the other quadratic terms will also give nonlinear corrections to the GWs
emitted by cosmic strings. Our results here therefore represent just one particular nonlinear contribution
to these GW signals. Since we argue below that nonlinear effects are important near cusps on large cosmic
string loops, it would be interesting to explore these additional contributions further in future work.
However, we note that there are two features of the nonlinear memory term that make it particularly
important here, and justify our focus on this one term. The first is that it is hereditary, i.e., it depends
on the entire history of the source; as we will see, this has the effect of transferring power from very high
frequencies down to the frequencies we can observe. The second is that it is radiative, i.e., it determines
the GW signal measured by distant observers, rather than just affecting the spacetime near to the source
(indeed, Christodoulou’s original expression for the nonlinear memory effect [201] was derived entirely in
terms of gauge-invariant quantities at null infinity, and can be very cleanly identified with equation (2.51)
above).

Returning to equation (2.51), we can insert the expressions for the polarisation tensors from equa-
tion (0.19) to write

(𝑒+,𝑖 𝑗 − i𝑒×,𝑖 𝑗 )𝑟 ′𝑖 𝑟
′
𝑗 = [(𝜽 − i�̂� ) · 𝒓 ′]2. (2.52)

We can also rewrite the energy flux (2.51) in terms of the linear GW strain of the source using equa-
tion (0.43). The leading GW memory term then becomes

ℎ (1) (𝑡 , 𝒓 ) =
∫ 𝑡

−∞

d𝑡 ′

2𝑟

∫
𝒓 ′
|𝑟 ¤ℎ (0) (𝑡 ′, 𝒓 ′) |2, (2.53)

where we have written the angular integral as∫
𝒓 ′
[· · · ] ≡

∫
𝑆2

d2𝒓 ′

4π
[(𝜽 − i�̂� ) · 𝒓 ′]2

1 − 𝒓 · 𝒓 ′ [· · · ], (2.54)

for brevity. Throughout we refer to the oscillatory strain ℎ (0) on the right-hand side that sources the
memory as the ‘primary’ GW emission.

2.2 .1 Late-time memory

One drawback of equation (2.53) is that it is written in terms of the time-domain primary strain, whereas
the cosmic string waveforms that we want to consider are much more naturally expressed in the frequency
domain. This problem disappears when we consider the late-time memory, i.e. the total strain offset
caused by the cusp,

∆ℎ (1) ≡ lim
𝑡→∞

ℎ (1) (𝑡 ), (2.55)
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as the time integral in equation (2.53) is then over the entire real line, and we can thus use Parseval’s
theorem to write

∆ℎ (1) (𝒓 ) = 2π2

𝑟

∫
R

d𝑓
∫
𝒓 ′
|𝑟 𝑓 ℎ̃ (0) ( 𝑓 , 𝒓 ′) |2, (2.56)

where ℎ̃ (0) is the Fourier transform of the primary strain signal, and the extra factor of frequency comes
from the time derivative on the strain.

2.2 .2 Frequency-domain memory waveforms

The late-time memory (2.56) is useful for giving a sense of the total size of the memory effect, but in
many cases is not directly observable. For example, the test masses in ground-based GW interferometers
like LIGO/Virgo are not freely-falling in the plane of the interferometer arms; they are acted upon by
feedback control systems at low frequencies to mitigate seismic noise [500]. These low-frequency forces
mean that the test masses cannot sustain a permanent displacement after the GW has passed. However,
the ‘ramping up’ of the memory signal from zero at early times to ∆ℎ (1) at late times can be measured if it
contains power in the sensitive frequency band of the interferometer.

We are therefore interested in calculating the full memory signal in the frequency domain. The simplest
way of doing this is to use the result8

F
[∫ 𝑡

−∞
d𝑡 ′ 𝑔 (𝑡 ′)

]
=

1
2
𝑔 (0)𝛿 ( 𝑓 ) − i

2π𝑓
𝑔 ( 𝑓 ) (2.57)

for a general function 𝑔 (𝑡 ), where F [· · · ] denotes the Fourier transform, and 𝑔 = F [𝑔 ]. Applying this
to equation (2.53), we obtain

ℎ̃ (1) ( 𝑓 ) = 1
2

∆ℎ (1)𝛿 ( 𝑓 ) − i
2π𝑓

∫
R

d𝑡
2𝑟

∫
𝒓 ′

e−2πi𝑓 𝑡 |𝑟 ¤ℎ (0) |2. (2.58)

We can neglect the term proportional to 𝛿 ( 𝑓 ), as this only contributes at 𝑓 = 0, and we are interested
here in frequencies which are accessible to GW experiments (this zero-frequency term is still captured in
equation (2.56)). By replacing each factor of ¤ℎ (0) with its Fourier transform and massaging the resulting
expression, we find

ℎ̃ (1) ( 𝑓 ) = − iπ
𝑟 𝑓

∫
R

d𝑓 ′
∫
𝒓 ′
𝑓 ′( 𝑓 ′ − 𝑓 )𝑟 2ℎ̃ (0) ( 𝑓 ′, 𝒓 ′)ℎ̃ (0)∗( 𝑓 ′ − 𝑓 , 𝒓 ′). (2.59)

This is the simplest way of calculating the frequency-domain memory using only the primary frequency-
domain signal ℎ̃ (0) .

2.3 Memory from cusps

We are now ready to calculate the nonlinear memory from cusps, inserting the primary waveform (2.36)
into equations (2.56) and (2.59) to obtain the late-time memory and frequency-domain waveform,

8One can show this by noting that
∫ 𝑡
−∞ d𝑡 ′ 𝑔 (𝑡 ′) is just the convolution of 𝑔 (𝑡 ) with the Heaviside step function𝛩 (𝑡 ). Since

F [𝛩] = (1/2)𝛿 ( 𝑓 ) − i/(2π𝑓 ), the result follows from the convolution theorem, F [𝛩 ∗ 𝑔 ] = F [𝛩]F [𝑔 ].
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2.3 Memory from cusps

and then iterating this process to obtain higher-order memory corrections. (This iteration process is
conceptually similar to the procedure described by Khera et al. [370], Talbot et al. [537] to incorporate
higher-order memory effects in BBH waveform models.)

2.3 .1 Beaming effects

The anisotropic beaming of the GWs from cusps is what gives rise to a nonzero memory effect (due to its
nonzero TT projection), and is captured in the angular integral

∫
𝒓 ′
𝛩 (𝒓 c ·𝒓

′− cos 𝜃b), where we are using
the shorthand (2.54). To compute this integral, it is convenient to define polar coordinates 𝒓 ′

= (𝜃 ′, 𝜙 ′)
such that the North pole 𝜃 ′ = 0 coincides with the centre of the beam 𝒓 c. The integrand then only has
support for 𝜃 ′ ∈ [0, 𝜃b], so that we obtain∫

𝒓 ′
𝛩 (𝒓 c · 𝒓

′ − cos 𝜃b) =
∫ 𝜃b

0
d𝜃 ′ sin 𝜃 ′

2

∫ 2π

0

d𝜙 ′

2π
[(𝜽 − i�̂� ) · 𝒓 ′]2

1 − 𝒓 · 𝒓 ′

=
1 + cos 𝐼
1 − cos 𝐼

[
1
2
(1 − cos 𝜃b) cos 𝜃b −

1
4

cos 𝐼 sin2 𝜃b

]
,

(2.60)

where 𝐼 ≡ cos−1 𝒓 c · 𝒓 is the inclination of the beam to the observer’s line of sight. In the high-frequency
regime where the primary cusp and kink waveforms are valid, the beam angle is very small, so we expand
equation (2.60) to leading order in 𝜃b to obtain∫

𝒓 ′
𝛩 (𝒓 c · 𝒓

′ − cos 𝜃b) ≃
𝜃 2

b
4
(1 + cos 𝐼 ). (2.61)

There are a few remarks worth making about equation (2.61). First, we note that it assumes 𝐼 ≫ 𝜃b;
when instead the inclination is much smaller than the beaming angle, 𝐼 ≪ 𝜃b, the integral (2.60) drops to
zero, as the TT part of the angular emission vanishes when the beam is aligned with the line of sight. The
fact that the result (2.61) is purely real, despite the integrand being complex, shows that the memory strain
is linearly polarised, much like the primary cusp and kink waveforms. Geometrically, the 𝜃 2

b/4 factor
represents the fraction of the sphere taken up by the beam, while the (1 + cos 𝐼 ) factor shows how the
strength of the memory effect varies with inclination. In particular, we notice that the memory strain is
nonzero when the observer lies outside of the beam, 𝐼 > 𝜃b. In fact, the observed memory strain vanishes
only when the beam is face-on (𝐼 ≪ 𝜃b) or face-off (𝐼 = π), as in both cases the angular pattern of the
primary GW emission is isotropic around the line of sight.

It is interesting to note that this angular pattern—a broad ∼ (1 + cos 𝐼 ) distribution, except at very
small inclinations where the memory signal drops to zero—is exactly the same as that of the linear GW
memory generated by the ejection of an ultrarelativistic ‘blob’ of matter from a massive object along a
fixed axis [503]. Intuitively, this makes complete sense: the setup here is essentially the same, except that
the ‘blob’ is replaced by a burst of GWs.
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0± 2/` f ± 2/`f/2 f ′

|f ′| < |f ′ − f | |f ′| > |f ′ − f |

−∞ +∞

Figure 2.3: Schematic illustration of the different contributions to ℎ̃ (1)
c ( 𝑓 ) from the integral over 𝑓 ′ in equa-

tion (2.59). By introducing a dimensionless dummy variable𝑢 ≡ 𝑓 ′/| 𝑓 | we obtain the two integrals shown
in equation (2.63), one corresponding to the finite interior region 2/ℓ < 𝑓 ′ < 𝑓 − 2/ℓ, and the other
corresponding to the two semi-infinite exterior regions 𝑓 ′ < −2/ℓ and 𝑓 ′ > 𝑓 + 2/ℓ.

2.3 .2 Late-time memory

Now that we have computed the angular integral (2.60), it is straightforward to obtain the late-time
memory from the cusp. Inserting equations (2.36) and (2.35) into equation (2.56) and integrating over
frequency, we find

∆ℎ (1)
c = 2 × 32/3(π𝐴c𝐺𝜇)2(1 + cos 𝐼 )ℓ/𝑟 . (2.62)

Inserting the numerical factors, this has a maximum value of ∆ℎ (1)
c ≈ 14.86×(𝐺𝜇)2ℓ/𝑟 for nearly-face-on

cusps 𝐼 ≳ 0, and smoothly tapers to zero for face-off cusps 𝐼 = π. We note that equation (2.62) should be
taken with a pinch of salt, as it is sensitive to the low-frequency regime where the primary waveform is less
accurate; nonetheless, we expect this to give a reasonable estimate of the magnitude of the memory effect.

2.3 .3 Full waveform

We now calculate the full frequency-domain cusp memory waveform by inserting equations (2.36)
and (2.35) into equation (2.59). In doing so, we must be careful to correctly account for the beha-
viour of the two frequency arguments 𝑓 ′ and 𝑓 ′ − 𝑓 ; in particular, the integrand is only nonzero when
both of these arguments have magnitude greater than 2/ℓ, and the size of the beam angle 𝜃b must always
be set by whichever of the two arguments has the greater magnitude (as this corresponds to a smaller,
more restrictive beam). These different contributions are illustrated in figure 2.3 for the case where 𝑓 is
positive. Assuming that | 𝑓 | > 4/ℓ, we find

ℎ̃
(1)
c ( 𝑓 ) = − i∆ℎ (1)

c

22/33πℓ1/3 𝑓 | 𝑓 |1/3

[∫ ∞

2/ | 𝑓 |ℓ

d𝑢
𝑢 1/3(1 + 𝑢)

−
∫ 1/2

2/ | 𝑓 |ℓ

d𝑢
𝑢 1/3(1 − 𝑢)

]
, (2.63)

where 𝑢 is a dimensionless dummy variable. We can simplify this by taking | 𝑓 | ≫ 4/ℓ, as this is the
regime where the primary waveforms are valid; in this high-frequency limit, both integrals can be evaluated
analytically. Inserting equation (2.62), the final result is

ℎ̃
(1)
c ( 𝑓 ) ≃ −i𝐵𝑐

(𝐺𝜇)2ℓ2/3

𝑟 𝑓 | 𝑓 |1/3 (1 + cos 𝐼 )𝛩 ( | 𝑓 | − 2/ℓ), (2.64)

with a numerical prefactor,

𝐵c ≡ π𝐴2
c (3/2)2/3

[
4π

3
√

3
− 2𝐹1( 2

3 ,
2
3 ; 5

3 ;−1)
]
≈ 1.191, (2.65)
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Figure 2.4: A cartoon illustration of the angular distribution of the energy radiated by a cusp. The primary emission
(blue) is concentrated in a narrow beam of width 𝜃b ∼ ( 𝑓 ℓ)−1/3, while the first-order memory emission (violet)
is proportional to (1 + cos 𝐼 )2, and the second-order memory emission (red) is proportional to sin4 𝐼 .

where 2𝐹1 is a hypergeometric function. While we assumed | 𝑓 | > 4/ℓ in order to obtain equation (2.63),
we have checked that our final expression (2.64) underestimates the true memory signal in the region
2/ℓ < | 𝑓 | < 4/ℓ (assuming the primary signal is accurate at these frequencies, which we expect to be
the case to within an order of magnitude if one ignores the low-frequency motion not associated with
the cusp), so we can safely leave the low-frequency cutoff at 2/ℓ as in the primary waveform. The simple
expression (2.64) thus gives a conservative but generally accurate model of the time-varying part of the
cusp memory waveform at all frequencies greater that the fundamental mode of the loop, while the
zero-frequency offset is described by equation (2.62).

Comparing equation (2.64) with the primary cusp waveform (2.36), we see that they are remarkably
similar to each other, with both being given by the same simple frequency power law ∼ 𝑓 −4/3 and the
same dependence on the loop length ℓ (the latter being required by dimensional arguments). There are,
however, some important differences:

1. The memory GW emission has broad support on the sphere, while the primary waveform only has
support inside a narrow beam (see figure 2.4).

2. The memory waveform is suppressed by an additional power of𝐺𝜇 (this makes intuitive sense,
given that it is a nonlinear effect sourced by the primary GW emission).

3. The numerical constant in front of the memory waveform,𝐵c, is an order of magnitude larger than
that in front of the primary waveform, 𝐴c.

The first point is particularly crucial, as it lies at the heart of the divergent behaviour that we investigate in
sections 2.3.6 and 2.3.7.
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Figure 2.5: The time-domain GW strainℎc (𝑡 ) from a cusp, with and without the leading-order memory contribu-
tion (2.66). The memory is exaggerated by a factor of ∼ 1/𝐺𝜇 here to make it visible. For small inclinations
𝐼 < 𝜃b the observer lies within the cusp’s beam, and sees the memory superimposed on the primary cusp signal
(solid red line). If the inclination is very small, 𝐼 ≪ 𝜃b, then the memory vanishes and only the primary cusp
signal is observable (solid blue line). In most cases however, the observer lies outside of the beam, and only
the memory is observable (red dashed line). Note that the higher-order memory contributions (order 𝑛 ≥ 2)
are not shown here; these would look like step functions in the time domain, with height that either diverges
rapidly with 𝑛 (‘large’ loops, ℓ ≳ 𝛿/(𝐺𝜇)3) or converges so rapidly that the contribution to the total signal is
negligible (‘small’ loops, ℓ ≲ 𝛿/(𝐺𝜇)3).

2.3 .4 Time-domain waveform near the arrival time

While we have focused on deriving the memory signal in the frequency domain, we can inverse-Fourier-
transform equation (2.64) to obtain a simple closed-form expression in the time domain,

ℎ
(1)
c (𝑡 ) − ℎ (1)

c (𝑡0) ≃ −25/33π𝐵c
(𝐺𝜇)2

𝑟
(1 + cos 𝐼 ) (𝑡 − 𝑡0)

[
1 − 𝛤 (2/3)

(4π|𝑡 − 𝑡0 |/ℓ)2/3

]
. (2.66)

(Here we have re-introduced the time of arrival of the primary cusp signal, 𝑡0, rather than setting it to
zero.) This time-domain waveform is shown in figure 2.5. Note that this is real, which means that the
signal is linearly polarised, just like the primary waveform (2.36).

It is important to note that since equation (2.64) is only valid for high frequencies 𝑓 ≫ 2/ℓ, equa-
tion (2.66) must only be valid for a short duration |𝑡 − 𝑡0 | ≪ ℓ around the arrival time. However, for
typical loop sizes this ‘short duration’ is actually much longer than the relevant observational timescale
(typically a few seconds), so the approximation in equation (2.66) may be a useful one.
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2.3 .5 Radiated energy

Inserting the memory waveform (2.64) into equation (2.37), we find the radiated energy spectrum

𝜖
(1)
c ( 𝑓 , 𝒓 ) ≃ π

2
𝐵2

c (𝐺𝜇)3( 𝑓 ℓ)1/3(1 + cos 𝐼 )2𝛩 ( 𝑓 − 2/ℓ). (2.67)

The fact that ℎ̃ (0)
c is purely real while ℎ̃ (1)

c is purely imaginary means that there is no coherent cross-energy
between the two contributions, so the total energy is just 𝜖 (0)

c + 𝜖
(1)
c . For observers in the beaming

direction the energy spectra of the primary and memory signals scale in the exact same way with frequency,
but with a much smaller coefficient for the memory signal. However, the picture changes drastically when
integrating the spectra over the sphere to compute the total emission, as the primary emission is then
suppressed by a factor of 𝜃 2

b ∼ ( 𝑓 ℓ)−2/3, while the memory waveform gives

𝜖
(1)
c ( 𝑓 ) ≃ 8

3
(π𝐵c)2(𝐺𝜇)3( 𝑓 ℓ)1/3𝛩 ( 𝑓 − 2/ℓ). (2.68)

We see that the isotropic energy spectrum due to the memory emission is blue-tilted (i.e. grows with
frequency), while the primary spectrum (2.40) is red-tilted. This means that the memory emission
dominates at very high frequencies,

𝑓 >
3

16ℓ

(
𝐴c

𝐵c𝐺𝜇

)3
≈ 8 × 1022 Hz ×

(
ℓ

pc

)−1 (
𝐺𝜇

10−11

)−3
. (2.69)

2.3 .6 Ultraviolet divergence of the radiated energy

The total fraction of the loop’s energy radiated by the cusp memory can be found by integrating over
frequency, as in equation (2.41). For the primary signal, we saw in section 2.1.3 that this gives a small
total energy fraction of order𝐺𝜇. For the memory signal, however, the integral diverges. This is clearly
unphysical, and shows a breakdown in the validity of equation (2.64). Note however that this breakdown
is not in the low-frequency regime where we know that equation (2.64) is inaccurate; rather, the integral
has an ultraviolet divergence that goes like∼ 𝑓 1/3 at high frequencies 𝑓 → ∞. Instead, we can understand
this divergence as a breakdown of the Nambu-Goto approximation for the loop dynamics.

In section 2.1.1, we justified the use of the Nambu-Goto action by arguing that possible curvature
corrections ℏ𝜅/𝜇 should generically be very small for macroscopic loops, typically of order (𝛿/ℓ)2.
However, as we saw in section 2.1.2, the Nambu-Goto action generically predicts the formation of cusps,
where the GW strain looks locally like ℎ (𝑡 ) ∼ |𝑡 − 𝑡0 |1/3. As was already recognised by Damour and
Vilenkin [227], the curvature associated with this scales as𝜅 ∝ ¥ℎ ∝ |𝑡 − 𝑡0 |−5/3, which diverges at the
peak of the cusp, clearly ruining the validity of the Nambu-Goto approximation. This problem does
not manifest itself in the primary cusp waveform, since the beaming angle 𝜃b decreases fast enough with
frequency to ensure the total radiated energy is finite, cf. equation (2.42). However, the energy flux in
the centre of the beam is still divergent, and as we have shown here, this sources further divergences due
to the nonlinear nature of gravity. Since the memory effect is not beamed, there is nothing suppressing it
at high frequencies.
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Figure 2.6: The time derivative of the cusp strain signal close to the peak, |𝑡 − 𝑡0 | ≪ ℓ, for an observer in the
beaming direction, 𝐼 = 0. This diverges for the standard Nambu-Goto waveform (2.36), ruining the validity of
the Nambu-Goto approximation, and causing a divergence in the energy radiated by the first-order memory. By
introducing a frequency cutoff due to the finite string width, 𝑓 < 1/𝛿 , we see that the derivative becomes finite
and continuous, and the first-order memory divergence is regularised.

The simplest way to regularise this divergence is to impose an ultraviolet cutoff at some high energy
scale, for which the only obvious candidate is the string width scale. By truncating the frequency-domain
cusp waveform at 𝑓 ∼ 1/𝛿 , the cusp is smoothed out on timescales |𝑡 −𝑡0 | ∼ 𝛿 , and the curvature reaches
a finite maximum value that scales like𝜅 ∝ 𝛿−5/3. This smoothing is shown explicitly in figure 2.6, where
we see that the time derivative of the strain diverges in the Nambu-Goto case, but is finite and continuous
if a finite width is introduced. (In this heuristic setup, it is not immediately clear whether or not the
smoothing afforded by a finite string width is strong enough to prevent higher-curvature terms in the
action from becoming important near the cusp; we return to this point later.)

We therefore consider only GWs with frequency 𝑓 < 1/𝛿 . This has no impact on the primary wave-
form, since 1/𝛿 ≈ 1038 Hz ×

(
𝐺𝜇/10−11)1/2, which is beyond the reach of any current or planned GW

experiments. However, the cutoff does impact the GW memory. For example, setting an upper limit of
𝑓 = 1/𝛿 in the integral (2.41), we find a finite value for the energy radiated by the cusp memory,

E (1)
c ≃ 8(π𝐵c)2(𝐺𝜇)3(ℓ/𝛿 )1/3 ≈ 2 × 10−16 ×

(
𝐺𝜇

10−11

)19/6 (
ℓ

pc

)1/3
, (2.70)

where we have used 𝛿 ≈ ℓPl/
√︁
𝐺𝜇 in the second expression. This shows that the energy radiated due to

the first-order memory effect is smaller than that from the primary emission for observationally-allowed
values of the string tension,𝐺𝜇 ≲ 10−11. However, the factor of (ℓ/𝛿 )1/3 ≫ 1 in equation (2.70) is
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concerning. Based on equation (2.70), cusps on GUT-scale strings (𝐺𝜇 = 10−6) would radiate far more
energy through the memory effect than through the primary GWs; for ℓ ≳ 0.4 pc they would radiate
more than the entire energy of the loop. Such a situation would be unphysical, and would indicate the
breakdown of the validity of the primary cusp waveform. One might argue that this is not an issue, since
GUT-scale Nambu-Goto strings are already ruled out by observations; however, we show below that
accounting for higher-order memory effects exacerbates the problem, leading to similar unphysical results
even for much lower string tensions.

We should note that the cutoff imposed here is rather ad-hoc, and is done in a way that is agnostic to
the underlying microphysics of the string. In reality, the divergence will be resolved in a way which may
depend on the microphysics, and the GW memory observables may be sensitive to this; indeed, this is
implied by the fact that equation (2.70) depends directly on the string width 𝛿 .

The fact that equation (2.70) depends on the loop length ℓ distinguishes it from the equivalent
expression for the primary signal, equation (2.42), in which we found that a fixed fraction of the loop’s
energy (roughly∼ 𝐺𝜇) was radiated by the cusp regardless of the loop length. The reason for the difference
here is that we have introduced a new lengthscale to the problem, the string width 𝛿 , so on dimensional
grounds we can expect powers of ℓ/𝛿 to appear. The reason we have a positive power of ℓ/𝛿 here is that,
as we can see from equation (2.68), the energy radiated by the cusp memory at any fixed frequency 𝑓
is larger for larger loops, scaling like ∝ ℓ1/3. In equation (2.70) we are essentially calculating the energy
radiated at the string-width frequency 1/𝛿 , and thus end up with a factor of (ℓ/𝛿 )1/3. This is a foretaste
of one of our key findings in this chapter, which is that the cusp memory diverges only for loops greater
than some critical length.

2.3 .7 Second-order memory

The memory waveform (2.64) describes the spacetime curvature generated by the energy-momentum of
the primary GWs from the cusp. However, these memory GWs themselves carry energy-momentum, and
will in turn act as a source of their own GW memory (see reference [537] for a discussion of this effect
in the context of binary black hole coalescences). We refer to this ‘memory of the memory’ here as the
second-order memory effect.

The calculation of this second-order memory contribution is straightforward for cusps, simply substi-
tuting equation (2.64) into the right-hand side of equation (2.59) and following all of the same steps as
before. The key difference is in the angular integral,

∫
𝒓 ′
(1 + cos 𝐼 ′)2 = 1

6 sin2 𝐼 , which, due to the broader
emission of the first-order memory signal, is not suppressed by a factor of 𝜃 2

b ; cf. equation (2.61). The
resulting expressions for the late-time memory and frequency-domain waveform are

∆ℎ (2)
c =

2(π𝐵c)2

3𝑟
(𝐺𝜇)4ℓ4/3 sin2 𝐼

∫ ∞

2/ℓ

d𝑓
𝑓 2/3 ,

ℎ̃
(2)
c ( 𝑓 ) = −

iπ𝐵2
c

3𝑟 𝑓
(𝐺𝜇)4ℓ4/3 sin2 𝐼

[∫ ∞

2/ℓ

d𝑓 ′

𝑓 ′1/3( 𝑓 ′ + | 𝑓 |)1/3 +
∫ | 𝑓 |/2

2/ℓ

d𝑓 ′

𝑓 ′1/3( | 𝑓 | − 𝑓 ′)1/3

]
,

(2.71)
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both of which contain integrals which diverge due to high-frequency contributions from the first-order
memory. Introducing the 𝑓 < 1/𝛿 cutoff from section 2.3.6 once again, we find to leading order in 𝛿 ,

∆ℎ (2)
c ≃ 2π2ℓ

𝑟
𝐵2

c (𝐺𝜇)4(ℓ/𝛿 )1/3 sin2 𝐼 , ℎ̃
(2)
c ( 𝑓 ) ≃ − i∆ℎ (2)

c
2π𝑓

𝛩 (1/𝛿 − | 𝑓 |)𝛩 ( | 𝑓 | − 2/ℓ). (2.72)

This is interesting in that it departs from the the ∼ 𝑓 −4/3 scaling of both the primary waveform (2.36)
and the first-order memory waveform (2.64); the second-order memory instead has a slower decay with
frequency, due to the lack of beaming in the first-order memory. In fact, for intermediate frequencies
2/ℓ < | 𝑓 | < 1/𝛿 the second-order memory is identical to the Fourier transform of a Heaviside step
function of height ∆ℎ (2)

c . This means that on timescales much shorter than the loop oscillation period
ℓ/2 and much longer than the light-crossing time of the loop width 𝛿 , the second-order memory signal
looks like a step function in the time domain; this is because the signal is dominated by high frequencies
𝑓 ≲ 1/𝛿 , and therefore ‘switches on’ in a very short time interval9, |𝑡 − 𝑡0 | ≲ 𝛿 .

The waveform (2.72) can be used to calculate a second-order correction to the energy radiated by the
cusp,

𝜖
(2)
c =

π𝑟 2 𝑓 3

2𝐺𝜇ℓ

(
|ℎ̃ (0)

c + ℎ̃ (1)
c + ℎ̃ (2)

c |2 − |ℎ̃ (0)
c + ℎ̃ (1)

c |2
)
=
π𝑟 2 𝑓 3

2𝐺𝜇ℓ

(
|ℎ̃ (2)

c |2 + 2ℎ̃ (1)
c ℎ̃

(2)∗
c

)
=

[
π3

2
𝐵4

c (𝐺𝜇)7(ℓ/𝛿 )2/3 𝑓 ℓ sin4 𝐼 + π2𝐵3
c (𝐺𝜇)5(ℓ/𝛿 )1/3( 𝑓 ℓ)2/3 sin2 𝐼 (1 + cos 𝐼 )

]
×𝛩 (1/𝛿 − | 𝑓 |)𝛩 ( | 𝑓 | − 2/ℓ).

(2.73)

We see that, unlike for the first-order correction, there are now nonzero cross-terms due to ℎ̃ (1)
c and ℎ̃ (2)

c

being exactly in phase with each other, resulting in two new contributions to the energy. Integrating over
frequency and emission direction, the total energy is given by

E (2)
c =

16
15

(π𝐵c)4(𝐺𝜇)7(ℓ/𝛿 )5/3 + 4(π𝐵c)3(𝐺𝜇)5(ℓ/𝛿 ). (2.74)

Comparing with the corresponding first-order result (2.70) we see a clear pattern emerging, where the
second term in equation (2.74) is multiplied by a factor of ∼ π𝐵c(𝐺𝜇)2(ℓ/𝛿 )2/3 compared to the first-
order energy, and multiplying by the same factor again gives the first term in equation (2.74). This factor
is greater than unity so long as the loop length ℓ is larger than

ℓ∗ ≡
𝛿

(π𝐵c)3/2(𝐺𝜇)3 ≈ 0.7 km ×
(
𝐺𝜇

10−11

)−7/2
, (2.75)

which applies to all macroscopically-large loops.
One would naively expect successive memory corrections for a generic GW source to become less

and less important at higher order; the fact that they become more important for such a large class
of cosmologically-relevant cosmic string loops is surprising, and suggests that something unphysical is

9This picture is closely related to the zero-frequency limit (ZFL) method for calculating radiation from high-energy gravitational
scattering [149, 517, 552, 572], which leverages the fact that the scattering is effectively instantaneous compared to the GW
frequencies of interest.
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happening. Indeed, if we plug numerical values into equation (2.74), we find that loops larger than
about 0.1 pc × (𝐺𝜇/10−11)−47/10 have E (2)

c greater than unity, meaning that they radiate away more
than the total energy of the loop. This represents a significant worsening of the issue we identified at the
end of section 2.3.6. The problem only gets worse when we go beyond second-order corrections, as we
demonstrate below.

2.3 .8 Higher-order memory, and another divergence

Iterating the procedure described above to calculate the third-order GW memory, it is straightforward to
show that it obeys the same step-function-like relation that we found at second order,

ℎ̃
(3)
c ( 𝑓 ) = − i∆ℎ (3)

c
2π𝑓

𝛩 (1/𝛿 − | 𝑓 |)𝛩 ( | 𝑓 | − 2/ℓ), (2.76)

with the late-time memory given by

∆ℎ (3)
c =

2π2

𝑟

∫
R

d𝑓
∫
𝒓 ′
𝑟 2 𝑓 2

(
|ℎ̃ (2)

c |2 + 2ℎ̃ (1)
c ℎ̃

(2)∗
c

)
, (2.77)

where we have made sure to include both of the second-order energy contributions as source terms for
the third-order memory. Upon integration, this becomes

∆ℎ (3)
c = −4𝛿

5𝑟
(ℓ/ℓ∗)8/3 sin2 𝐼

(
1 − 1

3
cos2 𝐼

)
− 2𝛿

𝑟
(ℓ/ℓ∗)2 sin2 𝐼

(
1 + 3

5
cos 𝐼

)
, (2.78)

where ℓ∗ is the𝐺𝜇-dependent lengthscale defined in equation (2.75).

The third-order memory clearly scales differently for loops with ℓ ≫ ℓ∗ (which we call ‘large loops’)
compared to those with ℓ ≪ ℓ∗ (which we call ‘small loops’). When going to fourth order and beyond,
we obtain an increasing number of cross-terms in the energy at each order (starting with |ℎ̃ (𝑛)

c |2, then
2ℎ̃ (𝑛−1)

c ℎ̃
(𝑛)∗
c , 2ℎ̃ (𝑛−2)

c ℎ̃
(𝑛)∗
c , and so on, down to 2ℎ̃ (1)

c ℎ̃
(𝑛)∗
c ), resulting in a proliferation of terms in the

resulting memory expressions, each with a different power of ℓ/ℓ∗. It is therefore much simpler to treat
small and large loops separately, and focus on the leading power of ℓ/ℓ∗ in each case. This results in a very
economical formula for iterating the memory calculation, valid for all 𝑛 ≥ 2,

∆ℎ (𝑛)
c =


𝑟

𝛿

∫
𝒓 ′
|∆ℎ (𝑛−1)

c |2, for ℓ ≫ ℓ∗

6π𝑟
𝛿 2

∫
𝒓 ′

∆ℎ (𝑛−1)
c |ℎ̃ (1)

c (1/𝛿 ) |, for ℓ ≪ ℓ∗

(2.79)

where we have evaluated the frequency integral in each case, leaving just the angular integral. The frequency-
domain waveform is then given by the same quasi-step-function form as before,

ℎ̃
(𝑛)
c = − i∆ℎ (𝑛)

c
2π𝑓

𝛩 (1/𝛿 − | 𝑓 |)𝛩 ( | 𝑓 | − 2/ℓ), (2.80)
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and the corresponding energy spectra are given by

𝜖
(𝑛)
c =


𝑟 2 𝑓

8π𝐺𝜇ℓ
|∆ℎ (𝑛)

c |2, for ℓ ≫ ℓ∗

𝑟 2 𝑓 2

2𝐺𝜇ℓ
∆ℎ (𝑛)

c |ℎ̃ (1)
c |, for ℓ ≪ ℓ∗

(2.81)

Solving equation (2.79) iteratively with equation (2.72) as an input, we find for all 𝑛 ≥ 2,

∆ℎ (𝑛)
c =


𝛿

𝑟
(ℓ/ℓ∗)2𝑛/3𝐿𝑛 (𝐼 ), for ℓ ≫ ℓ∗

𝛿

𝑟
(ℓ/ℓ∗)2𝑛/3𝑆𝑛 (𝐼 ), for ℓ ≪ ℓ∗

(2.82)

where 𝐿𝑛 (𝐼 ) and 𝑆𝑛 (𝐼 ) are polynomials in cos 𝐼 which describe the angular pattern of the memory
for large and small loops, respectively—these are described in detail in appendix C.2. For small loops,
all memory effects are subdominant compared to the primary emission, and equation (2.82) gives a
convergent geometric series. For large loops, on the other hand, the memory emission becomes stronger
at each order, and equation (2.82) gives a lacunary series which diverges extremely quickly. One might
hope that the polynomials 𝐿𝑛 (𝐼 ) decrease in magnitude fast enough to counteract the divergence, but
we find empirically in appendix C.2 that |𝐿𝑛 (𝐼 ) | ≈ 5(2/5)2𝑛−2 sin2 𝐼 , so the series diverges as long as
ℓ ≳ (5/2)3ℓ∗ ≈ 1 km × (𝐺𝜇/10−11)−7/2, as shown in figure 2.7. We discuss the cause of this divergence
in appendix C.1, and argue that it is caused by a trans-Planckian GW energy flux from the cusp.

2.3 .9 Memory from cusp collapse

The results of the previous section show that, even with an ultraviolet cutoff in place at the scale of the
string width, the standard cusp waveform (2.36) leads to a divergence for all ‘large’ loops with length
ℓ ≳ 𝛿/(𝐺𝜇)3. The fact that the divergence appears in observable, gauge-independent quantities (the
memory strain and, therefore, the radiated energy) means that something unphysical must be going on.
Since the only inputs to our calculation are the cusp waveform (2.36) and the GW memory formula (2.51),
at least one of these two ingredients must break down for cusps on loops of this size.

In order to track down the cause of the divergence, let us list the assumptions that go into equa-
tions (2.36) and (2.51):

1. The GW frequency is assumed to be much greater than the fundamental mode of the loop, 𝑓 ≫
2/ℓ. This is because the waveform (2.36) is derived using the universal behaviour of the loop on
scales ≪ ℓ near the cusp.

2. The loop’s dynamics are assumed to follow the Nambu-Goto action (2.5) on lengthscales larger
than the loop width 𝛿 . (We have imposed a cutoff that effaces scales below this, in order to regularise
the first divergence we encountered in section 2.3.6.)

3. The loop is assumed to evolve according to the flat-space equations of motion (2.12)–(2.14); i.e.
gravitational backreaction is assumed to be negligible.
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4. The GWs generated by the loop are assumed to be well-described by linear perturbations on a flat
background.

As mentioned earlier, the first assumption cannot be the source of the problem, as the divergence is
associated with very high frequencies near the string width scale.

The second assumption is robust so long as (𝑖 ) the higher-order curvature terms in the worldsheet
Lagrangian (2.6) are negligible, and (𝑖 𝑖 ) the strings are created through the breaking of a local gauge
symmetry, so that the underlying field theory does not give rise to long-range interactions (i.e. we are
not considering global strings, which would instead be described by the Kalb-Ramond action [567]). As
mentioned in section 2.3.6, while introducing a finite string width prevents the curvature from diverging,
it does not necessarily guarantee that the higher-order curvature terms are negligible. In principle the
memory divergence identified here could be cured by departures from the Nambu-Goto action near the
cusp. However, these departures would have to take place on scales much greater than the string width,
which seems very difficult to achieve.

By elimination, it seems that the problem is mostly likely due to assumptions 3 and 4: i.e., that the
flat-space description of the cusp’s dynamics and GW generation is inconsistent. Indeed, we can trace
the divergence back to the fact that the integrated GW energy flux diverges in the centre of the cusp’s
beam,

∫
d(ln 𝑓 ) 𝜖 (0)

c ( 𝑓 , 𝒓 c) → ∞, which already suggests that a flat-space description is insufficient.
This divergent flux is hidden somewhat by the narrowness of the beam, 𝜃b ∼ ( 𝑓 ℓ)−1/3, which ensures
that E (0)

c is finite, but we have shown that the GW memory inherits and amplifies the divergence.
One possible resolution is that the gravitational backreaction of the loop on itself could smooth

out the cusp on scales much larger than 𝛿 . However, there is large body of literature on cosmic string
backreaction [107, 133, 134, 159, 183, 191, 214, 465, 539, 570, 571] which indicates that the backreaction
timescale is ∼ ℓ/(𝐺𝜇), much longer than the loop’s oscillation period. While it is true that these studies
all assume linearised gravity, and are thus likely to underestimate the magnitude of the effect near cusps, it
is still hard to see how the loop could backreact fast enough to smooth out the cusp on relatively large
scales before the peak of the signal.

All of this suggests that we need some strong-gravity mechanism which acts on a very short timescale
while the cusp is forming, and suppresses the cusp’s GW emission at frequencies far below the cutoff,
𝑓 ≪ 1/𝛿 . In section 2.5, we propose exactly such a mechanism: we argue that when cusps form on
sufficiently large cosmic string loops, they source such extreme spacetime curvature that a small portion of
the loop could collapse to form a black hole at a time ∼ 𝐺𝜇ℓ before the peak of the cusp emission. We will
see that, remarkably, the loops for which this ‘cusp collapse’ process is predicted to occur are those with
length ℓ ≳ 𝛿/(𝐺𝜇)3—exactly the same loops for which the higher-order memory divergence occurs.

It is difficult to calculate the precise GW signal associated with cusp collapse, but as we will show later
in section 2.6.1, there are two main qualitative differences it introduces compared to the standard cusp
waveform: (𝑖 ) the Fourier transform of the primary strain signal, ℎ̃ (0)

c , is reduced by a factor ≈ 1/2, as it
only receives contributions from the half of the signal at times before the peak; (𝑖 𝑖 ) more importantly, there
is a loss of power at frequencies 𝑓 ≳ 1/(𝐺𝜇ℓ), due to the truncation immediately before the peak. Both
of these effects influence the corresponding GW memory signal. We can account for (𝑖 ) by multiplying the
strain at each order in the memory expansion by the appropriate power of 1/2, and can approximate the
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2 Nonlinear gravitational-wave memory from cosmic strings
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Figure 2.7: The fractional energy radiated by a cusp at different orders in the memory expansion as a function of
loop length, with𝐺𝜇 = 10−11. The top panel shows the standard cusp case, clearly illustrating the divergence at
ℓ ≳ ℓ∗ ≈ 90 m. The bottom panel shows the cusp collapse case, for which the radiated energy at each order
drops to a small, ℓ-independent value for ℓ ≳ ℓ∗, curing the divergence.
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2.3 Memory from cusps

effect of (𝑖 𝑖 ) by introducing a sharp cutoff at frequency 𝑓 = 1/(𝐺𝜇ℓ), which is equivalent to replacing
𝛿 → 𝐺𝜇ℓ in all previous expressions. The critical lengthscale (2.75) which previously marked the onset
of the divergence then becomes

ℓ∗ →
ℓ

(π𝐵c)3/2(𝐺𝜇)2 ≫ ℓ, (2.83)

which means that we are always in the ‘small loop’ regime, ℓ ≪ ℓ∗; higher-order memory corrections are
suppressed by powers of𝐺𝜇, and the divergence is avoided completely, as shown in figure 2.7. Note that
the cusp collapse process is only predicted to take place for loops with ℓ ≳ 𝛿/(𝐺𝜇)3, and that the GW
memory from smaller loops is still described by the results given above, with ℓ∗ given by equation (2.75).

More explicitly, if the divergence is indeed cured by invoking cusp collapse, then the GW observables
from the cusp are as follows: the primary waveform is

ℎ̃
(0)
c ≃ 𝐴c

𝐺𝜇ℓ2/3

𝑟 | 𝑓 |4/3 𝛩 (𝒓 · 𝒓 c − cos 𝜃b)𝛩 ( | 𝑓 | − 2/ℓ)

(1/2)𝛩 (1/𝐺𝜇ℓ − | 𝑓 |), for ℓ ≫ ℓ∗

𝛩 (1/𝛿 − | 𝑓 |), for ℓ ≪ ℓ∗
(2.84)

with ℓ∗ given by (2.75); the first-order memory waveform is

ℎ̃
(1)
c ≃ −i𝐵c

(𝐺𝜇)2ℓ2/3

𝑟 𝑓 | 𝑓 |1/3 (1 + cos 𝐼 )𝛩 ( | 𝑓 | − 2/ℓ)

(1/4)𝛩 (1/𝐺𝜇ℓ − | 𝑓 |), for ℓ ≫ ℓ∗

𝛩 (1/𝛿 − | 𝑓 |), for ℓ ≪ ℓ∗
(2.85)

with the corresponding late-time memory given by

∆ℎ (1)
c ≈ 2 × 32/3(π𝐴c𝐺𝜇)2(1 + cos 𝐼 ) ℓ

𝑟


1/4, for ℓ ≫ ℓ∗

1, for ℓ ≪ ℓ∗
(2.86)

and the 𝑛th-order memory waveforms for 𝑛 ≥ 2 are all step-function-like,

ℎ̃
(𝑛)
c ≈ − i∆ℎ (𝑛)

c
2π𝑓

𝛩 ( | 𝑓 | − 2/ℓ)

𝛩 (1/𝐺𝜇ℓ − | 𝑓 |), for ℓ ≫ ℓ∗

𝛩 (1/𝛿 − | 𝑓 |), for ℓ ≪ ℓ∗
(2.87)

with height given by

∆ℎ (𝑛)
c ≈


ℓ

𝑟

(
π𝐵c

4

)2𝑛−1

(𝐺𝜇)1+ 2𝑛+1
3 𝐿𝑛 (𝐼 ), for ℓ ≫ ℓ∗

𝛿

𝑟
(ℓ/ℓ∗)2𝑛/3𝑆𝑛 (𝐼 ), for ℓ ≪ ℓ∗

(2.88)

It is interesting to note that loops with length just below the cusp-collapse threshold, ℓ ≲ ℓ∗, emit
more energy through GW memory than those above the threshold. We can see this already in the primary
emission, where the total energy emission is

E (0)
c ≈ 32/3(π𝐴c)2𝐺𝜇 ×


1/4, for ℓ ≫ ℓ∗

1, for ℓ ≪ ℓ∗
(2.89)
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2 Nonlinear gravitational-wave memory from cosmic strings

with only cusps above the collapse threshold being subject to the 1/4 reduction in GW power due to the
truncation of the signal. However, the difference becomes more significant in the memory emission,

E (1)
c ≈


1
2
(π𝐵c)2(𝐺𝜇)8/3, for ℓ ≫ ℓ∗

8(π𝐵c)3/2(𝐺𝜇)2(ℓ/ℓ∗), for ℓ ≪ ℓ∗

(2.90)

where there is an extra power of (𝐺𝜇)2/3 for cusps above the collapse threshold, compared to those just
below it. This pattern continues for higher-order memory, where the total radiated energy for all 𝑛 ≥ 2 is
given by

E (𝑛)
c ≈


1
2

(
π𝐵c

4

)2𝑛

(𝐺𝜇)2𝑛+2/3
∫
𝑆2

d2𝒓

4π
|𝐿𝑛 (𝐼 ) |2, for ℓ ≫ ℓ∗

1
2
(π𝐵c)3/2(𝐺𝜇)2(ℓ/ℓ∗) (2𝑛−1)/3

∫
𝑆2

d2𝒓

4π
6(1 + cos 𝐼 )𝑆𝑛 (𝐼 ), for ℓ ≪ ℓ∗

(2.91)

In section 2.6.1, we will also discuss a further GW signature associated with cusp collapse: the high-
frequency quasi-normal ringing of the newly-formed black hole after the collapse. We neglect this effect
here however, as it is hard to say anything concrete about the phase evolution and angular pattern of this
additional GW emission, and this prevents us from calculating the associated memory signal. It would be
interesting to revisit this contribution to the memory if and when more detailed phase-coherent cusp
collapse waveform models become available.

2.4 Memory from kinks

As we saw in section 2.1.3, kinks are persistent features of cosmic string loops (unlike cusps, which are
transient): they propagate around the loop at the speed of light, continuously emitting GWs in a beam
which traces out a one-dimensional ‘fan’ of directions, like a lighthouse. This fact is usually unimportant
when computing the primary GW emission from kinks, since the beam only overlaps with the observer’s
line of sight for a small fraction of the loop oscillation time, meaning that kinks are effectively transient
sources for any given observer. However, in order to calculate a GW memory signal, we need to know the
primary GW flux in all directions over the entire history of the source, which for kinks means specifying
the beaming direction as a function of time.

We consider here the simplest case, where the beam of the kink traces out a great circle on the sphere at a
constant rate. We choose our polar coordinates such that this circle lies in the equatorial plane, 𝜃k = π/2.
The azimuthal direction of the kink’s beam is then given by 𝜙k = 4π𝜍𝑡 /ℓ with 𝜍 = ±1, where the two
different signs correspond to left- and right-moving kinks respectively.10 From equation (2.44) we then
have

ℎ̃
(0)
k ( 𝑓 , 𝒓 ) ≃ 𝐴k

𝐺𝜇ℓ1/3

𝑟 | 𝑓 |5/3 e−i𝜍𝜙 𝑓 ℓ/2𝛩 (𝜃b − |𝐼 |)𝛩 ( | 𝑓 | − 2/ℓ), (2.92)

10The definition of whether a given kink is left- or right-moving is somewhat arbitrary here. For concreteness, we call kinks with
𝜍 = +1 ‘left-moving’; these move anti-clockwise around the loop when viewed from the North pole 𝜃 = 0. Conversely, kinks
with 𝜍 = −1 are called ‘right-moving’; these move clockwise when viewed from 𝜃 = 0.
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2.4 Memory from kinks

where the inclination 𝐼 ≡ π/2 − 𝜃 describes the angle between the observer’s line of sight and the
closest point on the equatorial plane, and takes values 𝐼 ∈ [−π/2,π/2] (with positive/negative values
corresponding to the observer being above/below the plane). Note that we have picked up a phase factor
e−i𝜍𝜙 𝑓 ℓ/2 to account for the time at which the kink passes closest to the line of sight. As we show below, this
direction-dependent phase ultimately leads to a strong suppression of the kink memory signal compared
to the cusp case.

2.4 .1 Beaming effects

As in the cusp case, the first step in calculating the GW memory signal is to compute the angular integral
that captures the beaming effects of the kink,

∫
𝒓 ′

e−i𝜍𝜙′ 𝑓 ℓ/2𝛩 (𝜃b − |𝐼 |). Here the small circle of radius 𝜃b

around the North pole that we considered for cusps has been replaced with a narrow band of half-width
𝜃b around the equator, and we have included the 𝜙 -dependent phase factor from equation (2.92). It is
straightforward to integrate out the zenith angle 𝜃 ′ if we keep only the leading-order term in 𝜃b; this gives∫

𝒓 ′
e−i𝜍𝜙′ 𝑓 ℓ/2𝛩 (𝜃b − |𝐼 |) ≃ 𝜃b𝐾 𝑓 ℓ/2(−𝜍𝐼 ), (2.93)

where we have defined a family of azimuthal integrals,

𝐾𝑛 (𝐼 ) ≡
∫ 2π

0

d𝜙
2π

ei𝑛𝜙 (sin 𝐼 cos𝜙 − i sin𝜙)2

1 − cos 𝐼 cos𝜙
. (2.94)

Notice that the argument 𝑛 is always an integer, as the GW frequency is always an integer multiple of
the loop’s fundamental mode 2/ℓ (although we often ignore this when taking the continuum limit at
high frequencies). Computing the integral equation (2.94) for general 𝑛 therefore corresponds to finding
the Fourier spectrum of a complicated nonlinear function of 𝜙 ; we perform this calculation explicitly in
appendix C.3.

2.4 .2 Late-time memory

Using equation (2.56), along with the expression for the angular integral 𝐾0(𝐼 ) from equation (C.19),
we find that the late-time memory from the kink is given by

∆ℎ (1)
k =

35/6ℓ

𝑟
(π𝐴k𝐺𝜇)2 4 sin |𝐼 | + cos 2𝐼 − 3

cos2 𝐼
. (2.95)

Inserting numerical values, the strongest effect is ∆ℎ (1)
k ≈ −2.125 × (𝐺𝜇)2ℓ/𝑟 when the observer lies

in the plane of the kink 𝐼 = 0, an order of magnitude smaller than the maximum cusp memory. The
late-time kink memory decreases smoothly to zero as one approaches the poles 𝐼 → ±π/2.
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2 Nonlinear gravitational-wave memory from cosmic strings

Figure 2.8: A cartoon illustration of the angular distribution of the energy radiated by a kink. The primary
emission (blue) is concentrated in a narrow fan of half-width 𝜃b ∼ ( 𝑓 ℓ)−1/3 around the plane of the kink,
while the memory emission (red) is concentrated in two lobes either side of this plane, which are exponentially
suppressed as one approaches either of the directions normal to the plane.

2.4 .3 Full waveform

The calculation here is very similar to the cusp case in section 2.3.3. Inserting equation (2.92) into
equation (2.59), and taking care to enforce the frequency cutoffs and to account for the two competing
beam angles 𝜃b( 𝑓 ′) and 𝜃b( 𝑓 ′ − 𝑓 ), we obtain

ℎ̃
(1)
k ( 𝑓 ) ≃ − i25/3π(𝐴k𝐺𝜇)2ℓ1/3

31/6𝑟 𝑓 | 𝑓 |2/3 𝐾 𝑓 ℓ/2(−𝜍𝐼 )
[∫ ∞

2/ | 𝑓 |ℓ

d𝑢
𝑢2/3(1 + 𝑢)

−
∫ 1/2

2/ | 𝑓 |ℓ

d𝑢
𝑢2/3(1 − 𝑢)

]
(2.96)

for | 𝑓 | > 4/ℓ. (This is analogous to equation (2.63) from the cusp case.) Taking the limit | 𝑓 | ≫ 2/ℓ, we
can evaluate the integrals analytically to find

ℎ̃
(1)
k ( 𝑓 ) ≃ −i𝐵k

(𝐺𝜇)2ℓ1/3

𝑟 𝑓 | 𝑓 |2/3 𝐾 𝑓 ℓ/2(−𝜍𝐼 )𝛩 ( | 𝑓 | − 4/ℓ),

𝐵k ≡ 125/6π𝐴2
k

[
2π

3
√

3
− 2𝐹1( 1

3 ,
1
3 ; 4

3 ;−1)
]
≈ 0.2915,

(2.97)

where we have set the frequency cutoff at double the fundamental mode 2/ℓ due to the different behaviour
of the angular integral 𝐾𝑛 (𝐼 ) for 𝑛 = 1 compared to 𝑛 ≥ 2.

This waveform (2.97) shares many features with both the cusp memory waveform (2.64) and the
primary kink waveform (2.92). The most important difference from both of those waveforms is the de-
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2.4 Memory from kinks

pendence on inclination, which here is a function of frequency. Using the results derived in appendix C.3,
we can rewrite equation (2.97) as

ℎ̃
(1)
k ( 𝑓 ) ≃ −i𝐵k

(𝐺𝜇)2ℓ1/3

𝑟 𝑓 | 𝑓 |2/3
4 sin |𝐼 |
cos2 𝐼


(

cos 𝐼
1 + sin |𝐼 |

) 𝑓 ℓ/2
𝛩 ( 𝑓 − 4/ℓ), for 𝜍𝐼 < 0(

cos 𝐼
1 + sin |𝐼 |

)−𝑓 ℓ/2
𝛩 (−𝑓 − 4/ℓ), for 𝜍𝐼 > 0

(2.98)

meaning that the memory signal from left-moving kinks contains only negative frequencies above the
equatorial plane and only positive frequencies below the plane, and vice versa for right-moving kinks.

For high frequencies |𝑛 | ≫ 1 the angular integral 𝐾𝑛 (𝐼 ) has a maximum value of ≃ 4/(e|𝑛 |) at
inclination 𝐼 ≃ 1/𝑛. This means that the kink memory signal is only observable very close to the plane of
the kink (but not in the plane, where it vanishes; see figure 2.8), and is suppressed by an extra power of
frequency compared to the primary signal, ℎ̃ (1)

k ∼ 𝑓 −8/3.

2.4 .4 Time-domain waveform near the arrival time

As with the cusp case, we can reverse-Fourier-transform equation (2.98) to find the time-domain memory
strain around time of arrival of the primary kink signal, |𝑡 − 𝑡0 | ≪ ℓ. Unlike the cusp case, we obtain a
signal which is not linearly polarised, but contains both + and × polarisation content,

ℎ
(1)
k,+(𝑡 ) − ℎ

(1)
k,+(𝑡0) ≃

16π𝐵k (𝐺𝜇)2

21/3𝑟
(𝑡 − 𝑡0)

sin |𝐼 |
cos2 𝐼

𝐸2/3

(
2 ln

1 + sin |𝐼 |
cos 𝐼

)
,

ℎ
(1)
k,×(𝑡 ) − ℎ

(1)
k,×(𝑡0) ≃

64π2𝐵k (𝐺𝜇)2

21/3ℓ𝑟
(𝑡 − 𝑡0)2 sin 𝜍𝐼

cos2 𝐼
𝐸−1/3

(
2 ln

1 + sin |𝐼 |
cos 𝐼

)
,

(2.99)

where we have used the generalised exponential integral function, 𝐸𝑛 (𝑧) ≡
∫ ∞

1 d𝑥 e−𝑧𝑥𝑥−𝑛 . The ×-
polarised component is suppressed by an additional factor of (𝑡 − 𝑡0)/ℓ ≪ 1, meaning that the signal is
still approximately +-polarised.

An important difference with respect to the cusp case is that since kinks are long-lived rather than
transient, their memory signal is not concentrated around a particular arrival time, but can in principle
be observed at all times. One can easily obtain expressions analogous to equation (2.99) at any point in
the kink’s periodic motion by substituting in the appropriate time when evaluating the reverse Fourier
transform; in general this leads to a mixing between the +- and ×-polarisation modes.

2.4 .5 Radiated energy

As in the cusp case, we are interested in the total energy radiated by the kink, and how the memory
emission adds to this. Using equation (2.37), we find that the dimensionless energy spectrum for the
first-order memory is

𝜖
(1)
k ( 𝑓 , 𝒓 ) ≃ 4π𝐵2

k
(𝐺𝜇)3

( 𝑓 ℓ)1/3
sin2 𝐼 cos𝑓 ℓ−4 𝐼

(1 + sin |𝐼 |) 𝑓 ℓ
𝛩 ( 𝑓 − 4/ℓ). (2.100)
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2 Nonlinear gravitational-wave memory from cosmic strings

Recall that when integrating over the sphere, the primary spectrum (2.45) is suppressed by a factor of
the beaming angle 𝜃b ∼ ( 𝑓 ℓ)−1/3. The spherical integral for the memory contribution can be evaluated
explicitly to give a much stronger suppression,∫

𝑆2
d2𝒓

sin2 𝐼 cos𝑓 ℓ−4 𝐼

(1 + sin |𝐼 |) 𝑓 ℓ
=

8π
𝑓 ℓ ( 𝑓 ℓ − 2) ( 𝑓 ℓ + 2) ≃ 8π/( 𝑓 ℓ)3, (2.101)

so that at high frequencies, the isotropic energy spectrum is approximately

𝜖
(1)
k ( 𝑓 ) ≃ 32(π𝐵k)2 (𝐺𝜇)3

( 𝑓 ℓ)10/3𝛩 ( 𝑓 − 4/ℓ). (2.102)

We see that the angular pattern of the kink memory strongly suppresses the isotropic spectrum at high fre-
quencies, meaning that unlike in the cusp case, there is no frequency range where the memory contribution
dominates, and the total radiated energy converges without imposing an ultraviolet cutoff,

E (1)
k ≃ 3(π𝐵k)2

28/3 × 5
(𝐺𝜇)3. (2.103)

2.4 .6 Higher-order memory

As with the cusp case, we can iterate the memory calculation with our 1st-order memory waveform (2.97)
as an input to calculate the 2nd-order memory effect (the ‘memory of the memory’). This involves
calculating the angular integral∫

𝒓 ′
e−i𝜍𝜙′ 𝑓 ℓ/2𝐾 𝑓 ′ℓ/2(−𝜍𝐼 ′)𝐾 ( 𝑓 ′−𝑓 )ℓ/2(−𝜍𝐼 ′), (2.104)

which in the high-frequency regime | 𝑓 ′ |, | 𝑓 ′ − 𝑓 | ≫ 2/ℓ is well-approximated by

≃
16𝐾 𝑓 ℓ/2(−𝜍𝐼 )
( 𝑓 ′ℓ − 𝑓 ℓ/2)3 [𝛩 ( 𝑓 ′ − 4/ℓ)𝛩 ( 𝑓 ′ − 𝑓 − 4/ℓ) −𝛩 (−𝑓 ′ − 4/ℓ)𝛩 (−𝑓 ′ + 𝑓 − 4/ℓ)]. (2.105)

With this result to hand, the remaining steps are very similar to the calculations for the 1st-order memory
described above, yielding

ℎ̃
(2)
k ( 𝑓 ) ≃ −i

512π𝐵2
k (𝐺𝜇)

4

𝑟 𝑓 | 𝑓 |10/3ℓ7/3 𝐾 𝑓 ℓ/2(−𝜍𝐼 )𝛩 ( | 𝑓 | − 4/ℓ)
∫ ∞

4/ | 𝑓 |ℓ

d𝑢
𝑢2/3(𝑢 + 1)2/3(𝑢 + 1/2)3

≈ −i
1666 × (𝐺𝜇)4

𝑟 𝑓 | 𝑓 |10/3ℓ7/3 𝐾 𝑓 ℓ/2(−𝜍𝐼 )𝛩 ( | 𝑓 | − 4/ℓ).
(2.106)

The fact that this has the exact same dependence on the inclination 𝐼 as the 1st-order memory makes it
straightforward to iterate the process to higher orders. Doing this, we find that for all 𝑛 ≥ 2, the kink
GW memory is given schematically by

ℎ̃
(𝑛)
k ( 𝑓 ) ∼ −i(𝐺𝜇)2𝑛 𝑓 ℓ3

𝑟 ( | 𝑓 |ℓ)8𝑛/3 𝐾 𝑓 ℓ/2(−𝜍𝐼 )𝛩 ( | 𝑓 | − 4/ℓ), (2.107)
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2.5 Primordial black holes from cusp collapse

multiplied by some numerical constant (for which there does not seem to be a simple expression for all 𝑛).
The situation here is drastically different from the cusp case. For cusps we saw that each successive

order in the memory was suppressed by larger powers of𝐺𝜇 ≪ 1, but also enhanced by larger powers
of ℓ/𝛿 ≫ 1, and that in certain situations the latter would dominate, causing a divergence. For kinks,
we see instead that each order in the memory is not only suppressed by powers of𝐺𝜇, but is further
suppressed by a factor of ( | 𝑓 |ℓ)−8/3 ≪ 1 each time. The signal falls off quickly enough with frequency
that higher-order memory contributions are not sensitive to the string-width scale, and no factors of ℓ/𝛿
appear. This means that there is no situation where the kink memory diverges, and that the higher-order
contributions are negligible in any observational scenario. This lack of divergence is in agreement with
the cusp-collapse mechanism we have invoked as a possible resolution for the cusp divergence, as we will
see below that kinks are not predicted to form PBHs.

2.4 .7 Caveats of our approach

We have only considered the simplest case where kink’s beam traverses a fixed plane at a constant rate,
in order to make detailed analytical calculations feasible. This situation is highly idealised, and is not
representative of the loops one would find in a cosmological loop network, which would typically contain
structure on scales smaller than the loop length ℓ, causing the path of the beam to vary on those scales.
We expect that such structure is only likely to make a significant qualitative difference to our results if it is
on a scale corresponding to the GW frequency of interest. We note that small-scale structure on loops is
expected to be damped over time through gravitational backreaction [465], so our simple treatment here
is not likely to be too unreasonable. In any case, we do not expect such considerations to change the main
conclusion of this section: that memory from kinks is highly suppressed compared to the cusp case.

We have also neglected the fact that kinks always appear in pairs on loops, with one left-mover for every
right-mover. A realistic loop is likely to have several pairs of kinks, with each of these sourcing a GW
memory signal like the one calculated here. Since the kinks travel around the loop at the same average rate,
it is possible that the superposition of their memory signals could give rise to interesting coherent effects.
However, regardless of whether the kink memory signals are coherent or not, the GW energy flux will still
be of the same order of magnitude, so our main conclusions are unaffected.

2.5 Primordial black holes from cusp collapse

We saw in section 2.3 that the standard Nambu-Goto cusp waveform (2.36) leads to a divergence in the
total GW strain when accounting for all higher-order memory terms. In section 2.3.9, we argued that
this is due to a breakdown in the weak-field assumption used to derive the waveform in the first place. In
order to resolve the divergence, there must be some form of strong-gravity mechanism which truncates
the high-frequency GW emission.

In this section, we explore one tentative candidate for such a mechanism: that the GW emission
is suppressed by the formation of a black hole event horizon enclosing the cusp. Aside from curing
the cusp memory divergence, this presents a novel formation channel for primordial black holes. We
present two heuristic arguments for why this might happen, both based on the hoop conjecture (which
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Figure 2.9: A collapsing circular cosmic string loop (in blue) forms a PBH (in grey) once its Lorentz factor satisfies
equation (2.109).

we will define below). These arguments are not mathematically rigorous, and are subject to some open
conceptual issues around how exactly the hoop conjecture applies in highly dynamical and relativistic
situations such as cusps [132]. Ultimately we will require fully general-relativistic calculations to gain a
complete understanding of strong-gravity effects near cusps, probably in the form of numerical relativity
simulations. With these caveats in mind, we explore this ‘cusp-collapse’ scenario as one possible resolution
of the nonlinear memory divergence identified above, with particular emphasis on potential observational
signatures that could allow us to test this proposal.

2.5 .1 The hoop conjecture

The hoop conjecture, first formulated by Thorne [540], is a powerful diagnostic for the formation of
BH horizons in GR. The conjecture states that ‘horizons form when, and only when, a mass 𝑀 gets
compacted into a region whose circumference in every direction is C ≤ 4π𝐺𝑀 ’ [429]. In other words,
if a sphere containing mass 𝑀 fits inside its own Schwarzschild radius 𝑟S ≡ 2𝐺𝑀 , it forms a black
hole. This conjecture is intentionally somewhat vaguely defined in several ways; for example, there is no
unambiguous way to assign a mass to the gravitational field inside the sphere.11 For the present situation,
we include only the mass due to the matter fields,𝑀sphere ≡

∫
B𝑟

d3𝒙 𝑇00(𝑡 , 𝒙 ), where B𝑟 is a ball of radius
𝑟 , and the mass is a function of time and of the centre of the ball. The hoop conjecture then predicts BH
formation if

2𝐺𝑀sphere

𝑟
≥ 1. (2.108)

which we refer to as the ‘hoop condition’.

11Doing so would require a quasi-local measure of gravitational mass in GR, which is challenging for reasons we touched on in
section 0.1.7.
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2.5 Primordial black holes from cusp collapse

We are interested in cosmic string loops which lead to PBH formation, i.e., solutions to equations (2.12)–
(2.14) which satisfy the hoop condition (2.108) at some point in their evolution. The simplest example is
a circular loop, which contracts at an accelerating rate until the entire loop is compact enough to form a
PBH, as illustrated in figure 2.9. This occurs within a single loop oscillation period, and results in a PBH
of mass𝑀pbh ∼ 𝑀loop = 𝜇ℓ, which is smaller than the original loop by a factor of𝐺𝜇. One can show
that the horizon forms only once the loop’s Lorentz factor satisfies

𝛾 =
1

4π𝐺𝜇
. (2.109)

Since we know that 𝐺𝜇 ≪ 1, this corresponds to an ultrarelativistic contraction velocity 𝑣 ≃ 1 −
8π2(𝐺𝜇)2, and we can understand the PBH formation as being due to relativistic length contraction.
This mechanism for PBH formation from (quasi)circular loops has been studied extensively in the
literature [88, 164, 165, 282, 283, 306, 307, 310, 337, 400, 461]. However, circular collapse is only
possible if all three components of the loop’s angular momentum are smaller than those of a typical loop
by a factor of ∼ 𝐺𝜇 [567]. Circular collapse is thus finely-tuned, and only a very small fraction of the
cosmic loop population is expected to collapse in this way.

This naturally leads one to ask whether generic (i.e. noncircular) loops can form PBHs. It is easy to see
intuitively that a Lorentz factor of order𝛾 ∼ (𝐺𝜇)−1 like that in equation (2.109) is a necessary condition
for PBH formation, even for noncircular loops. Suppose we want to form a PBH which contains some
fraction 𝑓 of the loop’s mass,𝑀pbh = 𝑓 𝜇ℓ, corresponding to a 𝜎 interval of ∆𝜎 = 𝑓 ℓ. This length of
string must be compacted into a region of diameter ≲ 2𝑟S = 4𝐺𝑀pbh. The ratio between this lengthscale
and the corresponding 𝜎 interval is related to the loop’s tangent vector,

|𝑿 ′ | ≈ |∆𝑿 |
∆𝜎
≲

4𝐺𝑀pbh

𝑓 ℓ
= 4𝐺𝜇. (2.110)

We can relate the tangent vector to the loop’s dynamics by rearranging equation (2.13) to get

|𝑿 ′ | =
√︃

1 − | ¤𝑿 |2 =
1
𝛾
, (2.111)

which shows that the hoop condition is generically satisfied if part of the loop has a large enough Lorentz
factor,

𝛾 ≳
1

4𝐺𝜇
. (2.112)

This is not a sharp bound, just an order-of-magnitude estimate. The corresponding (exact) inequal-
ity (2.109) for circular loops agrees to within a factor of π. We expect equation (2.112) to have a similar
level of accuracy for generic loop configurations.

Note that in the above argument we have not assumed that the entire loop must be moving at such high
velocities, only some fraction 𝑓 of it. This is in contrast with the literature on (quasi)circular loop collapse,
which has looked exclusively at cases where all of the loop’s mass ends up behind the PBH horizon.12 The

12In fact, Polnarev and Zembowicz [461] briefly mention the possibility of forming a PBH from just part of the loop, but do not
discuss this idea in any detail.
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Figure 2.10: A segment of a cosmic string loop (in blue) becomes more compact as it develops a cusp. Once it
satisfies the hoop condition (2.108) it collapses to form a PBH (in grey).

argument sketched above therefore suggests a change in focus: rather than looking at PBH formation
from loops, we should be concerned with PBH formation on loops.

2.5 .2 The cusp-collapse mechanism

Now consider what happens for cusps. Since these correspond to a point on the loop moving at the speed
of light, the corresponding Lorentz factor diverges, instantaneously compacting a finite fraction of the
loop’s mass into an infinitesimally small region. Equation (2.112) then suggests that cusps should therefore
lead to some fraction of the loop’s mass being enclosed behind a horizon, as illustrated in figure 2.10.

We can look at this idea in more detail by considering the behaviour of solutions to the flat-space
EoMs (2.12)–(2.14) near a cusp, as we did in section 2.1.3. Using equation (2.25), we see that the position
and velocity of the loop near the cusp at time 𝑡 = 0 are given by

𝑿 0(𝜎) ≡
1
2
[𝑿 +(𝜎) + 𝑿 −(−𝜎)] =

1
2
¥𝑿𝜎2 + O(𝜎3),

¤𝑿 0(𝜎) ≡
1
2
[ ¤𝑿 +(𝜎) + ¤𝑿 −(−𝜎)] = 𝒓 c +

1
2
𝑿𝜎2 + O(𝜎3),

(2.113)

so that the distance from the cusp as a function of 𝜎 is given by

𝑟0(𝜎) =
√︁
𝑿 0 · 𝑿 0 =

1
2
| ¥𝑿 |𝜎2 + O(𝜎3). (2.114)

We see that the fact that ¤𝑿 + = ¤𝑿 − = 𝒓 c at the cusp means that there is no term of order 𝜎 in equa-
tion (2.114), and the distance grows much more slowly for small 𝜎 than it would on a non-cuspy part of
the loop; this is the crucial ingredient for fulfilling the hoop condition.
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2.5 Primordial black holes from cusp collapse

Consider now a sphere of radius 𝑟 ≪ ℓ, centred at the cusp. We see from equation (2.114) that the
portion of the loop contained in the sphere is given by −𝜎∗ ≤ 𝜎 ≤ 𝜎∗, where 𝜎∗ ≪ ℓ is defined by
𝑟 = 𝑟0(𝜎∗), such that 𝜎∗ =

√︁
2𝑟/| ¥𝑿 |. We thus see that the mass contained in the sphere is

𝑀sphere = 𝜇

∫ +𝜎∗

−𝜎∗
d𝜎 = 2𝜇𝜎∗ =

(
8𝜇2𝑟

| ¥𝑿 |

)1/2

. (2.115)

The hoop condition (2.108) is therefore satisfied if 𝑟 | ¥𝑿 | ≤ 32(𝐺𝜇)2, with the limiting PBH mass being
𝑀pbh = 16𝐺𝜇2/| ¥𝑿 |. The fact that this depends on the cusp’s acceleration | ¥𝑿 | rather than its velocity
may seem surprising at first, but we can understand this intuitively by using equations (2.12) and (2.111)
to write | ¥𝑿 | = |𝑿 ′′ | = d(1/𝛾 )/d𝜎 . The acceleration therefore tells us about the rate of change of the
Lorentz factor along the loop, and thus controls the size of the region that satisfies the hoop condition,
which sets the PBH mass.

We therefore find that, assuming the hoop conjecture can be applied in this simple way, cusps are
predicted to form PBHs with mass

𝑀pbh =
8
π�̄�

𝐺𝜇2ℓ ≈ 𝐺𝜇𝑀loop, (2.116)

which are a factor of𝐺𝜇 smaller than those formed from circular collapse. (Here we have used the effective
mode number �̄� ≡ ℓ | ¥𝑿 |/(2π) from section 2.1.3.)

2.5 .3 Properties of the PBHs

We can estimate the properties of the PBHs formed through cusp collapse by assuming that all of the
energy-momentum inside the sphere of radius 2𝐺𝑀 at time 𝑡 = 0 is trapped behind the horizon. Using
equation (2.23), the PBH’s linear and angular momenta are then given by

𝑃 𝑖 =

∫
B𝑟

d3𝒙 𝑇 0𝑖 (0, 𝒙 ) = 𝜇
∫ +𝜎∗

−𝜎∗
d𝜎 ¤𝑋 𝑖

0 ,

𝐽 𝑖 =

∫
B𝑟

d3𝒙 𝜀𝑖 𝑗𝑘 𝑥
𝑗𝑇 0𝑘 (0, 𝒙 ) = 𝜇

∫ +𝜎∗

−𝜎∗
d𝜎 𝜀𝑖 𝑗𝑘𝑋

𝑗

0
¤𝑋 𝑘

0 ,

(2.117)

where 𝜀𝑖 𝑗𝑘 is the Levi-Civita symbol. Inserting the leading-order terms from equation (2.113), and using
𝑀 = 2𝜇𝜎∗ = 16𝐺𝜇2/| ¥𝑿 |, we find

𝑷 = 𝑀

[
𝒓 c +

32(𝐺𝜇)2

3
𝑿

| ¥𝑿 |2

]
, 𝑱 =

2𝐺𝑀 2

3
¥𝑿
| ¥𝑿 |

× 𝒓 c. (2.118)

Thus we see that immediately after formation, the PBH is moving in the cusp direction 𝒓 c with an
ultrarelativistic velocity 𝑣 = |𝑷 |/𝑀 ≈ 1. In fact, the PBH’s Lorentz factor is of the same order of
magnitude as our estimate (2.112),

𝛾 ≤
√︂

3
128

(𝐺𝜇)−1, (2.119)
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Figure 2.11: An illustration of the PBH (in grey) immediately after formation. The cusp acceleration ¥𝑿 , cusp
velocity 𝒓 c, and PBH angular momentum 𝑱 are all orthogonal to each other. The cosmic string (in blue)
punctures the horizon at two points separated by a small angle ∼ 𝐺𝜇, with its cusp hidden behind the horizon.

where we have used equation (2.26) and the triangle inequality | ¥𝑿 + |2 + | ¥𝑿 − |2 ≥ | ¥𝑿 + + ¥𝑿 − |2. We also
see that the PBH is spinning around an axis orthogonal to both the cusp’s velocity 𝒓 c and its acceleration
¥𝑿 , as illustrated in figure 2.11, with a dimensionless spin parameter,

𝜒 ≡ |𝑱 |
𝐺𝑀 2 = 2/3, (2.120)

that is two-thirds of the extremal Kerr value 𝜒 = 1. This large spin is a direct consequence of the ortho-
gonality of the cusp’s velocity and acceleration, as enforced by equation (2.26). It is perhaps surprising at
first that we obtain such a specific prediction for the spin, but we can understand this as a consequence of
the universality of the string solution near the cusp, as discussed in section 2.1.3. We should point out,
however, that this prediction does not account for the mass and angular momentum radiated during the
collapse; we return to this point in section 2.5.6 below.

Note that the mass𝑀 includes the kinetic energy of the PBH, which is large due to its ultrarelativistic
velocity. The PBH’s rest mass is given by

𝑚 ≡
√
𝑀 2 − 𝑃 2 =

𝑀

𝛾
≈ (𝐺𝜇)2𝜇ℓ, (2.121)

which is smaller than the total mass of the loop by a factor of ∼ (𝐺𝜇)2. This means that the PBH radius is

𝑟 ∼ (𝐺𝜇)3ℓ, (2.122)

i.e., the size of the PBH scales linearly with the size of the loop, as expected from the fact that the PBH’s mass
is a fixed fraction of that of the loop (c.f. equation (2.116)). By using the Nambu-Goto approximation,
we have assumed throughout that the cosmic strings have zero width, effacing any physics which occurs
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on lengthscales smaller than the string width 𝛿 ∼
√︁
ℏ/𝜇. We therefore expect our results to hold only if

the PBH radius is larger than 𝛿 , which implies

ℓ ≳
𝛿

(𝐺𝜇)3 =
ℓ∗

(𝐺𝜇)2 ≈ 5.1 km ×
(
𝐺𝜇

10−11

)−7/2
, (2.123)

and corresponds to a minimum PBH rest mass of

𝑚min ≈ 𝛿

𝐺
≈ 𝑚Pl√︁

𝐺𝜇
≈ 6.9 g ×

(
𝐺𝜇

10−11

)−1/2
, (2.124)

where we recall that𝑚Pl/
√︁
𝐺𝜇 is the energy scale at which the cosmic strings are formed. We thus see

that there are three different classes of loops, corresponding to three broad ranges of loop lengths: loops
smaller than 𝛿/(𝐺𝜇) are driven by field-theoretic effects (as we mentioned in section 2.1.1), loops larger
than 𝛿/(𝐺𝜇)3 are able to form PBHs from cusps, and loops inbetween are unchanged compared to the
standard treatment in the Nambu-Goto literature. (These different regimes are summarised in figure 2.12.)
Remarkably, this cusp-collapse regime ℓ ≳ 𝛿/(𝐺𝜇)3 corresponds exactly to the ‘large-loop’ regime in
which the nonlinear memory from the cusp diverges, as we showed in section 2.3. This suggests that we
are along the right lines in searching for a strong-gravity resolution to this divergence.

The loop punctures the PBH horizon at two points, corresponding to (𝑡 , 𝜎) = (0,±𝜎∗). Using the
expansion (2.113) for 𝑿 0(±𝜎∗), we see that both points lie very near to the ¥𝑿 axis, which is in the PBH’s
equatorial plane. By continuing the expansion to at least O(𝜎3), one can show that

cos 𝜃∗ ≡
𝑿 0(𝜎∗) · 𝑿 0(−𝜎∗)
|𝑿 0(𝜎∗) | |𝑿 0(−𝜎∗) |

= 1 + O(𝜎2
∗ ), (2.125)

which implies that the angle between the two puncture points is 𝜃∗ ∼ 𝜎∗/ℓ ∼ 𝐺𝜇, and thus that both
points are very close to the equatorial plane. (This is important for our discussion of the subsequent
dynamics of the loop near the PBH in Section 2.5.7.) Accounting for the finite string width 𝛿 , we see that
these two puncture points are so close that it is possible for the loop to self-intersect at the PBH horizon.
Using simple trigonometry, the separation between the puncture points on the horizon is roughly

2𝐺𝑚pbh tan
𝜃∗
2

∼ (𝐺𝜇)4ℓ, (2.126)

so the loop self-intersects at the horizon if this separation is smaller than the string width 𝛿 , which occurs
if

ℓ ≲
𝛿

(𝐺𝜇)4 =
ℓ∗

(𝐺𝜇)3 ≈ 1.7 × 10−2 pc ×
(
𝐺𝜇

10−11

)−9/2
. (2.127)

In this case, one would expect the string to intercommute near the horizon, meaning that the PBH would
be immediately chopped off from the loop at formation.

It is worth pointing out that we could have found the exact same PBH radius (2.122) in a much quicker
way if we had applied the hoop condition to the GW energy density radiated by the cusp, rather than the
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energy density of the loop itself. To see this, write the total GW flux through a sphere of radius 𝑟 around
the cusp as

𝑀gw(𝑟 ) = 𝜇ℓ
∫ ∞

2π/𝑟

d𝑓
𝑓
𝜖c( 𝑓 ) ∼ 𝐺𝜇2ℓ2/3𝑟 1/3, (2.128)

where we have made sure to only include GWs with wavelengths smaller than the sphere, so that their
energy density (0.43) is well-defined. This expression then satisfies the hoop condition 2𝐺𝑀gw/𝑟 = 1 for
a sphere of size 𝑟 ∼ (𝐺𝜇)3ℓ, perfectly matching what we found in equation (2.122). Indeed, recalling our
finding from section 2.1.3 that GWs of frequency 𝑓 are generated by a region |𝜎 | ∼ ℓ2/3 𝑓 −1/3 surrounding
the cusp, we see that substituting in 𝑓 ∼ 2π/𝑟 ∼ (𝐺𝜇)−3/ℓ gives |𝜎 | ∼ 𝐺𝜇ℓ ∼ 𝜎∗, so that the string
segment radiating these GWs corresponds exactly to the region that collapses according to our arguments
above.

2.5 .4 Other points on the loop: pseudocusps and kinks

Consider now a generic loop segment at some time 𝑡 = 0, whose configuration is locally described by

𝑿 ±(𝜎±) = 𝒓 ±𝜎± + 1
2
¥𝑿 ±𝜎

2
± + O(𝜎3

±). (2.129)

If 𝒓 + = 𝒓 −, the point 𝜎 = 0 is a cusp with a divergent Lorentz factor𝛾 → ∞, which forms a PBH as
described above. However, our simple argument in equation (2.112) suggests that a divergent Lorentz
factor is not necessary for PBH formation; all we need is 𝛾 = O(1/𝐺𝜇). We therefore expect PBH
formation in situations where 𝜃 ≡ cos−1 𝒓 + · 𝒓 − ≃ |𝒓 + − 𝒓 − | is nonzero, so long as 𝜃 is small enough
(note that this is very reminiscent of our discussion around the beaming angle for the cusp GW signal in
section 2.1.3). We refer to points on the loop where 𝜃 is small but nonzero as ‘pseudocusps’.

In order to estimate how small 𝜃 must be, we generalise equation (2.114) to give the distance from the
pseudocusp for small 𝜎 at time 𝑡 = 0,

𝑟0(𝜎) ≈
1
2
𝜃 |𝜎 | + 1

2
| ¥𝑿 |𝜎2, (2.130)

where we have used the constraints (2.26), and have approximated (𝒓 + − 𝒓 −) · ¥𝑿 ≈ 𝜃 | ¥𝑿 |. Repeating the
arguments of section 2.5.2, we find that a PBH forms so long as 𝜃 < 8𝐺𝜇, with the corresponding mass
given by𝑀 = 2𝜇(8𝐺𝜇 − 𝜃 )/| ¥𝑿 |. The loop velocity at 𝜎 = 0 is 𝑣 ≃ 1 − 𝜃 2/8, so we can translate the
bound 𝜃 < 8𝐺𝜇 into a bound on the pseudocusp velocity. Doing so, we see that pseudocusps collapse to
form PBHs so long as their Lorentz factor obeys

𝛾 ≥ 1
4𝐺𝜇

, (2.131)

in agreement with our simple estimate (2.112). Since pseudocusps occur even more generically on loops
than cusps do [528], this result further enhances the PBH formation rate.

Note that in writing the Taylor expansion (2.129) we have assumed that the loop is smooth in the
neighbourhood of 𝜎 = 0, which precludes any discontinuities in the loop’s tangent vector, i.e., kinks.
However, it is easy to convince oneself that kinks do not contribute to PBH formation. A kink at some𝜎k
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near𝜎 = 0 would make equation (2.130) a piecewise smooth function, with different coefficients for each
order in 𝜎 on either side of the kink. Generically these coefficients are of the same order of magnitude on
both sides of the kink; there is nothing about the kink which forces the O(𝜎) term in equation (2.130) to
be small, which is what we require for PBH formation. As we have shown above, the smallness of this
term is uniquely associated with a large Lorentz factor, and therefore with (pseudo)cusps.

Of course, this last argument depends strongly on the Nambu-Goto approximation; in a full field-
theoretic setting one would expect kinks to carry gradient energy, which may be sufficiently concentrated
to satisfy the hoop condition. However, one would only expect the gradient energy to be large in a
region of size comparable to the string width 𝛿 , meaning the resulting PBH masses would be near the
minimal mass𝑚min ∼ 𝛿/𝐺 from equation (2.124). For kinks, as for cusps, we can trust the Nambu-Goto
approximation so long as we consider PBHs with mass𝑚 ≫ 𝑚min.

2.5 .5 Timescale of cusp collapse

One of the main assumptions we have made so far is that the loop is described by the flat-space equations
of motion (2.12)–(2.14) right up to the instant of PBH formation. A more complete analysis would
account for the gravitational backreaction of the loop on its own dynamics, which one would expect to
suppress the cusp. One might worry whether this suppression is strong enough to prevent the PBH from
forming.

Significant evidence against this worry comes from the extensive literature on cosmic-string backre-
action [107, 133, 134, 159, 183, 191, 214, 465, 539, 570, 571], in which numerous different approaches
(both analytical and numerical) have repeatedly shown that backreaction does not prevent cusps from
forming. There is general agreement that cusps are suppressed to some degree by backreaction, but that
this suppression occurs gradually over many loop oscillation periods, on a timescale of order the loop
decay time

𝑡decay ∼
ℓ

𝐺𝜇
. (2.132)

A serious problem with this argument is that essentially all of the existing work on string backreaction has
been done in the weak-field limit, treating the string’s gravity as a linear perturbation on the background
spacetime. This linearised approach is clearly unable to answer questions about strong-gravity effects,
such as whether or not PBH formation takes place.

One piece of evidence we can consider is the timescale on which the PBH formation occurs in the
scenario described above. The velocity of the string point𝜎 = 0 at times near to the cusp, |𝑡 | ≪ ℓ, can be
written as

¤𝑿 c(𝑡 ) = 𝒓 c + 𝑡 ¥𝑿 + 1
2
𝑡 2𝑿 + O(𝑡 3), (2.133)

with the corresponding Lorentz factor given by

𝛾c(𝑡 ) ≃
2
|𝑡 | |

¥𝑿 + − ¥𝑿 − |−1 ≈ ℓ

π�̄� |𝑡 | , (2.134)

where we have used the constraints (2.26), and the last equality generally holds to within an order
of magnitude. Since PBH formation is associated with the Lorentz factor growing above a certain
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Figure 2.12: A summary of the different scales in the cusp-collapse problem, including references to the equation or
section where they first appear. In the Nambu-Goto approximation there are only two dimensionful quantities:
the string tension 𝜇 and the loop length ℓ. Since the string tension usually appears in the dimensionless
combination𝐺𝜇, all of the system’s time- and length-scales can be written as (𝐺𝜇)𝑝 × ℓ for some power 𝑝 .
The fact that𝐺𝜇 ≪ 1 means that there is a strong hierarchy between these scales. Going beyond Nambu-Goto
introduces another dimensionful quantity with its own hierarchy of scales: the string width 𝛿 ≈ (𝜇/ℏ)−1/2.
(Note that many of the scales associated with 𝛿 here are lower limits on the loop size ℓ; e.g., 𝛿/(𝐺𝜇) is the
smallest loop size for which the Nambu-Goto approximation is valid.) These two sets of scales are shifted
relative to each other depending on ℓ. More complicated combinations of ℓ and 𝛿 are of course possible; e.g.,
the evaporation timescales for cusp-collapse and circular-collapse PBHs are (𝐺𝜇)8ℓ3/𝛿 2 and (𝐺𝜇)2ℓ3/𝛿 2

respectively.



2.5 Primordial black holes from cusp collapse

threshold (2.131), we can estimate the associated timescale by setting equation (2.134) equal to this
threshold, giving

∆𝑡pbh ∼ 𝐺𝜇ℓ. (2.135)

This shows that the PBH is formed on an extremely short timescale: shorter than the loop oscillation
period by a factor of𝐺𝜇, and shorter than the timescale for linear backreaction by a factor of (𝐺𝜇)2.
(See figure 2.12 for an overview of the different time- and length-scales in the loop-PBH system.) Even if
nonlinear backreaction is in principle strong enough to prevent the cusp from forming, it seems unlikely
that it can act on a short enough timescale to do so, meaning that backreaction seems unlikely to be able
prevent PBH formation.13

Equation (2.135) is a very important result for us, as it shows that we should expect the collapse process
to occur some short but finite time before the peak of the cusp GW signal at 𝑡 = 0, thereby suppressing
the GW emission at frequencies 𝑓 ≳ 1/∆𝑡 . As we showed in section 2.3.9, this loss of power at very high
frequencies cures the nonlinear memory divergence that would otherwise occur for cusps.

2.5 .6 Radiation from the collapse

Our analysis thus far has neglected the effects of gravitational radiation during the collapse. Radiation is
likely to be important, as the collapse is ultrarelativistic and highly nonspherical. In general, one would
expect the final mass, linear momentum, and angular momentum of the PBH to be of the form

𝑀 = 𝑀0(1 − 𝜖𝑀 ), 𝑃 = 𝑃0(1 − 𝜖𝑃 ), 𝐽 = 𝐽0(1 − 𝜖 𝐽 ), (2.136)

where a zero subscript denotes the naïve, zero-radiation quantity calculated above, and the 𝜖𝑖 are three
numbers between zero and unity, describing the efficiency with which each quantity is radiated away.
In the context of circular loop collapse, Hawking [307] calculated a theoretical upper bound on 𝜖𝑀 of
1 −

√︁
1/2 ≈ 29% by explicitly constructing a marginally outer trapped surface in the spacetime of the

collapsing loop and requiring that this surface be enclosed by the event horizon of the final PBH. This
argument depends heavily on the circular symmetry of the loop, and no such construction seems possible
in our case.

Despite the lack of symmetries here, we can make some interesting statements by requiring that the
final PBH spin 𝜒 = 𝐽/(𝐺𝑀 2) be less than or equal to unity; otherwise the PBH would be ‘overspun’ to
reveal a naked singularity, violating cosmic censorship [452, 575]. Since 𝜒0 = 2/3, we can write

𝜒 =
2
3

(1 − 𝜖 𝐽 )
(1 − 𝜖𝑀 )2 ≤ 1. (2.137)

We see that, so long as 𝜖 𝐽 ≲ 2𝜖𝑀 , the final spin parameter of the PBH is larger than the naïve value 2/3,
which shows that the upper bound (2.137) is likely to be useful. In general, we expect 𝜖 𝐽 ≲ 𝜖𝑀 ; see e.g.
Durrer [246], in which the rate at which loops radiate angular momentum is shown to be typically an
order of magnitude smaller than the rate at which they radiate mass. If 𝜖 𝐽 = 𝜖𝑀 , then equation (2.137)

13See also Thompson [539], who examines backreaction on cusps and argues geometrically that cusps form ‘no matter how strong
the gravitational field near a cusp’.
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2 Nonlinear gravitational-wave memory from cosmic strings

gives 𝜖𝑀 ≤ 1/3 ≈ 33%. In the limit where 𝜖 𝐽 → 0, the bound is even stronger, 𝜖𝑀 ≤ 1 −
√︁

2/3 ≈ 18%.
Since we expect 0 < 𝜖 𝐽 < 𝜖𝑀 , the true upper bound for cusp collapse is likely to lie somewhere between
these two extremes.

Interestingly, numerical relativity simulations of circular loop collapse performed by Helfer et al. [310]
found 𝜖𝑀 ≲ 2%, well below Hawking’s bound (see also Aurrekoetxea et al. [88]). The authors suggest
that this is due to the symmetry of the circular collapse, which means the horizon is nearly spherical when
it first forms, suppressing the total radiation. The initial horizon in our case is likely to be highly distorted,
meaning that 𝜖𝑀 is likely to be closer to its upper bound. Of course, it is possible that cusp collapse
radiates angular momentum much more efficiently than is typical for loops as a whole, in which case 𝜖 𝐽
could be larger than calculated by Durrer [246]. It would then be possible for 𝜖𝑀 to be larger than the
rough bounds we found above.

We note in passing that radiation of linear momentum (𝜖𝑃 > 0) would lead to a ‘rocket effect’ [319, 557],
in which the loop’s centre of mass is given a kick in the opposite direction to the radiation. However, even
if this process is maximally efficient, the radiated momentum is at most 𝑃0 ≈ 𝐺𝜇𝑀loop, so the maximum
kick is 𝑣 ≈ 𝐺𝜇. This pales in comparison to the rms velocity of points on the loop, 𝑣rms =

√︁
1/2 that

we found in equation (2.19), so the effect is of negligible interest; radiation from elsewhere on the loop
quickly cancels out the kick.

2.5 .7 Dynamics of the loop-PBH system

Once formed, the PBH is inextricably linked to the surrounding string; the portion of the string enclosed
behind the horizon cannot escape, and the portion outside the horizon is topologically forbidden from
detaching itself. Since the mass of our PBHs is smaller than that of their parent loops by a factor of𝐺𝜇, we
expect the loop dynamics to be largely unaffected by the presence of the PBH, at least on timescales ∼ ℓ.
In particular, this means that despite its ultrarelativistic velocity, the PBH cannot drag the rest of the loop
along with it—instead, we expect the loop’s tension to act on the PBH to decelerate it, and for the loop to
continue oscillating in essentially the same motion as before. This could mean that cusp-collapse PBHs
do not trace the DM distribution, as their parent loops could easily drag them out of DM haloes. (This
possibility was also pointed out by Vilenkin et al. [566], albeit for a different PBH formation scenario.)

Most cusp-collapse PBHs are very small, and decay rapidly through Hawking radiation [305]. In
particular, the evaporation timescale (0.102) for the minimum mass (2.124) is ≈ 𝑡Pl(𝑚pbh/𝑚Pl)3 ≈
10−27 s× (𝐺𝜇/10−11)−3/2. It is unclear what effect the loop has on the evaporation process, and vice versa.
The PBH cannot maintain its mass at the minimum value in equation (2.124) by accreting the loop, since
this would correspond to the loop losing mass at a rate

d𝑚
d𝑡

≈
(
𝑚Pl

𝑚pbh

)2
𝑚Pl

𝑡Pl
≈ 𝜇 ≈

𝑀loop

ℓ
, (2.138)
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2.5 Primordial black holes from cusp collapse

i.e. the loop would have to lose all of its mass within a single oscillation period. This seems very unlikely,
given the limited gravitational influence of the PBH—the timescale for an object to free-fall from a distance
∼ ℓ into the PBH is

𝑡ff ∼ ℓ3/2√︁
𝐺𝑚pbh

≈ ℓ

(𝐺𝜇)3/2 , (2.139)

so even neglecting the loop’s kinetic energy, it would take many oscillation periods for it to be accreted.
We are therefore forced to allow the PBH to decay to sizes smaller than the loop width. It is hard to
envisage a way for the topologically-stable field configuration around the string to be disrupted by the
PBH evaporation, so the most likely outcome seems to be that the PBH simply vanishes from the loop.14

PBHs with rest mass larger than 𝑚∗ ≈ 5 × 1014 g ≈ 3 × 10−19𝑀⊙ evaporate very slowly, and lose a
negligible fraction of their mass within a Hubble time [176]. It is therefore interesting to consider how
these non-evaporating PBHs interact with their parent loops on cosmological timescales. For the simplest
case of an infinitely long straight string, explicit solutions for the metric of a BH threaded by a cosmic
string have been constructed for the Nambu-Goto case [84] and for Abelian-Higgs strings [45, 148, 187,
234, 286, 292]. For solutions where the BH is rotating, the string is assumed to be aligned with the spin
axis. In each case the solution is static, and the string represents a form of stable long-range hair on the BH.
Since the string is static, its only gravitational effect is to induce a conical singularity along its axis, with a
deficit angle ∼ 𝐺𝜇 [281, 564]. This deficit angle means that the string-BH solution is not asymptotically
flat, which explains how it evades the no-hair theorem [108, 490]. The deficit angle can also modify the
BH’s quasi-normal mode spectrum [189, 192].

The relevance of these results is somewhat limited in our case, as the string emanating from the PBH
is not static, but continues to oscillate relativistically. Perhaps even more importantly, the string is not
locally aligned with the PBH’s spin axis, so does not puncture the PBH at its poles like the cases studied in
this literature [45, 84, 148, 187, 234, 286, 292]. Instead, due to the geometry of the cusp, the two points
where the string punctures the horizon lie in—or very close to—the equatorial plane, and are separated
by a small angle ∼ 𝐺𝜇 (as we showed in section 2.5.3). Being in the equatorial plane, one would expect
relativistic frame-dragging to pull the string into a spiral configuration around the PBH spin axis on
scales ∼ 𝐺𝑚pbh. (On larger scales ∼ ℓ, the string tension easily overcomes the frame-dragging forces.)
This spiralling of the string around the PBH, combined with the very small separation between the two
points at which it punctures the horizon, makes it seem likely that the string intersects itself near to the
PBH. The PBH would thus be chopped off from the rest of the loop, leaving it with only a small segment
of string still attached, which it would rapidly accrete. For sufficiently small loops, we have shown in
equation (2.127) that the PBH is likely to be immediately chopped off at the moment of formation.

It is interesting to ask whether two PBHs connected to the same loop could have a greater chance
of merging due to the loop dynamics; a similar effect has been demonstrated for the annihilation of
monopole-antimonopole pairs connected by strings (so-called ‘cosmic necklaces’) [114, 515]. However,
the two PBHs would likely be separated by a distance ∼ ℓ much larger than their size, so based on the

14Bonjour et al. [148] and Gregory et al. [292] found that Abelian-Higgs string-BH systems can exhibit interesting ‘flux expulsion’
effects when the BH is smaller than the string width; however, these results are only valid for extremal Kerr and Reissner-
Nordström BHs, and it is not clear whether they have any bearing on our sub-extremal PBHs, or on the evaporation process.
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2 Nonlinear gravitational-wave memory from cosmic strings

discussion above we would expect the PBHs to be chopped off before the loop has the chance to pull
them together.

There are clearly many uncertainties in how cusp-collapse PBHs affect the loop network, but our very
rough arguments here suggest that small PBHs rapidly evaporate to leave the loop essentially unchanged
(although its dynamics are affected by the radiation), while large PBHs are likely to be cut off from loop
by string self-intersections on small lengthscales ∼ 𝐺𝑚pbh ∼ (𝐺𝜇)3ℓ.

2.6 Observational consequences

Having derived the nonlinear GW memory waveforms emitted by cusps and kinks, and having investigated
PBH formation as a potential mechanism for curing the memory divergence we encountered for cusps,
we are now ready to ask what implications these results have for observations. We begin by looking at the
impact that cusp collapse has on the primary GW emission from cosmic strings, and how this changes
existing bounds on𝐺𝜇, before exploring the detection prospects of the memory GW emission. We then
investigate the mass spectrum of the PBHs formed through cusp collapse, showing that the evaporation
of these PBHs leads to novel bounds on𝐺𝜇 (albeit weaker than those coming from GW observations),
and arguing that they form a unique BH population which could act as an observational ‘smoking gun’
for cosmic strings.

2.6 .1 Consequences of cusp collapse for GW searches

As a first approximation, we can model the effects of cusp collapse by transforming the standard wave-
form (2.36) to the time domain, and truncating it at some time 𝑡pbh < 𝑡0 when the horizon forms. In
the limit 𝑡pbh → 𝑡0 where the PBH forms at the peak of the cusp signal, the resulting frequency-domain
waveform is exactly half of the standard one, with the other half corresponding to the truncated part of
the signal at 𝑡 ≥ 𝑡0. Based on the discussion around equation (2.135), we expect 𝑡0 − 𝑡pbh ∼ 𝐺𝜇ℓ ≪ ℓ/2,
so the waveform is truncated slightly before 𝑡0, as shown in figure 2.13. This leads to a loss of power at
frequencies above 𝑓pbh ∼ 1/(𝐺𝜇ℓ), which cures the memory divergence, as we saw in section 2.3.9.

A further contribution to the signal comes from the quasinormal ringing of the PBH. We can describe
this very approximately by including only the leading-order (ℓ,𝑚, 𝑛) = (2, 2, 0) quasinormal mode
(QNM), writing

ℎ (𝑡 ) ≈ 𝐶
𝐺𝑚pbh

𝑟
exp[i(𝜔𝑡 + 𝜙) − 𝑡 /𝜏], (2.140)

where𝐶 and 𝜙 are unknown real constants. Using the fitting formulae in Berti et al. [120], we take the
real and imaginary parts of the (2, 2, 0) QNM for a PBH with spin 𝜒 = 2/3 as

𝜔 ≈ 0.5214/(𝐺𝑚pbh), 1/𝜏 ≈ 0.1715/(𝐺𝑚pbh). (2.141)

Since𝐺𝑚pbh ≈ (𝐺𝜇)3ℓ, we see that the ringdown signal is associated with extremely high frequencies,

𝜔 ≈ 5 × 1024 Hz ×
(
ℓ

pc

)−1 (
𝐺𝜇

10−11

)−3
. (2.142)
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Figure 2.13: A heuristic illustration of the different GW signals from collapsing and non-collapsing cusps. Shown
in blue is the standard time-domain cusp waveform (2.36), which is symmetric around the peak. The cusp
collapse waveform, in red, is truncated just before the peak, and eventually culminates in the QNM ringing
of the final PBH. The uncertain period inbetween is denoted with a question mark. Note that the QNM
frequency (2.142) is much higher than depicted here, and that this figure is only for illustrative purposes.

Our ignorance about the exact details of the collapse means that we cannot hope to construct an
accurate phase-coherent waveform like those found by Aurrekoetxea et al. [88] for circular loop collapse.
However, by accounting for the truncation of the cusp signal and the PBH ringdown, we can obtain a
reasonable first approximation to the (logarithmic, one-sided) GW energy spectrum,

𝜖gw ≈ (2/3)1/3

4
(π𝐴c)2𝐺𝜇

( 𝑓 ℓ)1/3 𝛩 (1 −𝐺𝜇ℓ𝑓 ) + 𝐶
2ℓ

4
(π𝑓 )3(𝐺𝜇)5 [L2 (2π𝑓 ;𝜔, 1

𝜏

)
+ L2 (2π𝑓 ;−𝜔, 1

𝜏

) ]
.

(2.143)
The first term here is reduced by a factor 1/4 compared to equation (2.38) (due to a factor 1/2 in each
power of the strain) and is truncated at 𝑓 ∼ 1/(𝐺𝜇ℓ), while the second part is the ringdown contribution,
written in terms of the Lorentzian

L(𝑥 ; 𝑥0,𝛾 ) ≡
𝛾/π

𝛾 2 + (𝑥 − 𝑥0)2 . (2.144)

We can fix the constant𝐶 by setting the total energy radiated by the ringdown term equal to𝐺𝜇𝜖𝑀 ,
where 𝜖𝑀 is the collapse radiation efficiency introduced in equation (2.136), and the factor𝐺𝜇 translates
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Figure 2.14: The GWB spectrum from cusps on cosmic string loops. Solid lines include the effects of cusp
collapse using equation (2.143), while dotted lines correspond to the standard case without collapse (2.38). The
magenta, cyan, and green curves show the power-law integrated sensitivities of LIGO/Virgo’s third observing
run [32, 36, 37], the Parkes PTA [512, 562], and LISA [171, 520], respectively. We use ‘model 3’ of the loop
network [396, 483] with𝐺𝜇 = 3 × 10−11, illustrating how the PPTA bound is weakened due to cusp collapse.
At high frequencies the spectra with and without cusp collapse become identical; the frequency at which this
changeover occurs decreases for smaller values of𝐺𝜇, meaning that the LIGO/Virgo bound on model 3 is the
same in both cases.

between the loop’s mass and the PBH’s relativistic mass (i.e. rest mass plus kinetic energy), with 𝜖𝑀
defined as a fraction of the latter. This gives

𝐶 =

√︄
64π𝜖𝑀

1 + 𝜔2𝜏2

𝜏/𝐺𝑚pbh

𝐺𝜇
≈ 10.70 × (𝜖𝑀 /𝐺𝜇)1/2. (2.145)

We assume a value of 𝜖𝑀 = 10%, which is consistent with the upper bounds we found in section 2.5.6,
and is comparable to the mass-radiation fraction found in numerical simulations of other ultrarelativistic,
strong-gravity phenomena [248, 522]. The total fraction of the loop’s mass radiated by the cusp is
approximately ∫ ∞

2/ℓ

d𝑓
𝑓
𝜖gw ≈


14.9𝐺𝜇 cusp,

(3.71 + 𝜖𝑀 )𝐺𝜇 cusp collapse,
(2.146)

which shows that the radiation from collapsing cusps is comparable to, but strictly less than, that from
non-collapsing cusps.

We can account for the effect of cusp collapse on the GWB from cosmic string loops by replacing the
GW energy spectrum used in equation (2.49) with that given here in equation (2.143). A representative
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example of the resulting GWB spectrum is shown in figure 2.14. At low frequencies 𝛺gw is reduced by
a factor of 1/4 compared to the standard spectrum, which relaxes the constraints on𝐺𝜇 coming from
LIGO/Virgo [24] and from PTAs [131, 388, 512, 562]. At high frequencies this factor 1/4 difference
vanishes, as the signal is dominated by loops which are too small to undergo cusp collapse. The changeover
between these two regimes depends on the value of𝐺𝜇, as this sets the size of the smallest loops that
can undergo cusp collapse through equation (2.123); for smaller values of𝐺𝜇 the changeover happens
at lower frequencies. At very high frequencies the QNM emission from PBHs forming in the matter
era gives rise to a strong peak, but this is dwarfed by the radiation-era plateau, making it unobservable
(regardless, these frequencies are well beyond the reach of any current or planned GW experiment).

2.6 .2 Detection prospects for the nonlinear memory

Having calculated the nonlinear GW memory waveforms associated with cusps and kinks, it is natural
to ask whether these signals are detectable with current or future GW observatories. Clearly the diver-
gent behaviour diagnosed for cusps in section 2.3.7 could, in principle, have important observational
implications, depending on how the divergence is regulated. For the purposes of this section we assume
the divergence is resolved along the lines of the cusp-collapse scenario described in section 2.5. We show
below that, under this assumption, the cusp and kink memory signals are suppressed so strongly that they
are well beyond the reach of GW observatories, even future third-generation interferometers like Einstein
Telescope (ET) [464] and Cosmic Explorer (CE) [472].

We start by calculating the expected detection horizons for individual bursts of GW memory from
cusps and kinks—i.e. the maximum distance at which a burst can be detected, on average. We assume
a matched-filter search, such that the optimal root-mean-square SNR (averaging over sky location and
polarisation angle) for a frequency-domain waveform ℎ̃ ( 𝑓 ) which is isotropically averaged over the source
inclination is given by [406]

𝜌rms =

[∑︁
𝐼

4
5

sin2 𝛼𝐼

∫ ∞

0
d𝑓

|ℎ̃ ( 𝑓 ) |2
𝑃𝐼 ( 𝑓 )

] 1/2

. (2.147)

The sum here is over different GW detectors, with 𝑃𝐼 ( 𝑓 ) representing the noise power spectral density
(PSD) of detector 𝐼 , and 𝛼𝐼 the opening angle between the two interferometer arms (this angle enters
through the detector’s response function; LIGO, Virgo, and CE have an opening angle of π/2, while
each of ET’s three interferometers has an opening angle of π/3). It is convenient to rewrite this in terms
of the fractional energy spectrum, using equation (2.37) to give

𝜌rms =

[∑︁
𝐼

2𝐺𝜇ℓ
5π2𝑟 2 sin2 𝛼𝐼

∫ ∞

0
d𝑓

𝜖 ( 𝑓s)
𝑓 3

s 𝑃𝐼 ( 𝑓 )

] 1/2

, (2.148)

where 𝑟 (𝑧) is now the comoving distance to the source, and 𝑓s = (1 + 𝑧) 𝑓 is the source-frame frequency,
with 𝑧 the redshift. We assume that any cosmic string signal with 𝜌rms ≥ 12 can be confidently detected;
in reality, this threshold depends on the distribution of non-Gaussian noise transients (‘glitches’) in the
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Figure 2.15: Contributions to the GWB energy spectrum 𝛺gw ( 𝑓 ) from cosmic strings at different orders in the
memory expansion, assuming that the memory divergence is resolved through the cusp-collapse scenario. We see
that the memory effect is negligible compared to the primary emission. Here we assume ‘model 2’ [130, 131] of
the string network, and a string tension of𝐺𝜇 = 8.1 × 10−11 (this is the largest string tension allowed by current
constraints in the cusp-collapse scenario [347]; smaller tensions suppress the memory effect even further). The
dashed/dotted curves show the contributions from the matter/radiation era, respectively, with the solid curves
showing the combined spectra. A distinct change in all three of the radiation-era spectra is visible at around
𝑓 ≈ 10 Hz; at frequencies above this, the spectra are increasingly dominated by small loops which do not
undergo cusp-collapse, and this is why the memory effect becomes more prominent (though still undetectable).
The sensitivity curves are the same as in figure 2.14.

network, and how closely these are able to mimic the waveforms of interest, but we ignore these details
here.

Even assuming an optimistic third-generation GW detector network consisting of Einstein Telescope
plus two Cosmic Explorers,15 we find that given current constraints on the string tension (𝐺𝜇 ≲ 10−11),
the detection horizon for a cusp memory signal is at most ≈ 2 pc. This corresponds to a negligibly small
detection rate, as very few cosmic strings are expected within a volume of this size. For kink memory
the result is even more pessimistic, with a detection horizon of ≈ 0.008 AU (a few times larger than the
Earth-Moon distance). Larger values of the string tension𝐺𝜇 would boost the detectability of these
memory bursts, but would be in conflict with existing observational results.

In figure 2.15 we show the GWB spectrum from a particular model of the loop network, including the
contributions from first-order and higher-order GW memory from cusps and kinks. We see that while
the primary GWB reaches a plateau at high frequencies, the memory contributions to the GWB grow
with frequency above ≈ 10 Hz, which makes sense given the slower fall-off of the cusp memory emission

15For ET we use the ‘ET-D’ noise PSD [313], while for CE we use the ‘CE-2’ noise PSD [295].
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at high frequency compared to the primary cusp and kink signals. However, each order in memory is
suppressed by an additional factor of (𝐺𝜇)2, and this suppression is strong enough to render the memory
contribution unobservable at all frequencies.

2.6 .3 The PBH mass spectrum

We argued in section 2.1.2 that cosmic string loops typically form 𝑁c ≈ 1 cusp per oscillation period,
which means that cusp-collapse PBHs are continuously created by the loop network, from the very early
Universe to the present day, resulting in a broad distribution of PBH masses. This contrasts sharply with
the standard PBH formation scenario we discussed in section 0.3.4, where the collapse typically occurs at
a single early epoch, resulting in a monochromatic PBH mass spectrum.

We can write the comoving number density of cusp-collapse PBHs with rest mass between 𝑚 and
𝑚 + d𝑚 as

𝑛pbh(𝑚,𝑡 ) d𝑚 =

∫ 𝑡

0
d𝑡 ′

2𝑁c

ℓ𝑚
𝑛loop(ℓ𝑚 , 𝑡 ′) dℓ𝑚 , (2.149)

where 𝑛loop(ℓ, 𝑡 ) = (𝑎3/𝑡 4)F (𝛾 ) is loop distribution function we encountered in section 2.1.3, and
ℓ𝑚 ≈ 𝐺𝑚/(𝐺𝜇)3 is the loop length required to form a PBH of mass𝑚. We assume𝑁c = 1, consistent
with much of the literature on cosmic string phenomenology, particularly regarding GW searches [18, 87].
The factor of 2/ℓ𝑚 here accounts for the oscillation period of the loop which forms the PBH.

Since ℓ𝑚 corresponds to a fixed physical (rather than comoving) scale, PBH production only begins
once this scale has entered the horizon. This happens at cosmic time

𝑡𝑖 (𝑚) ≈ ℓ𝑚 ≈ 16 Gyr × 𝑚

10−10𝑀⊙
×

(
𝐺𝜇

10−11

)−3
, (2.150)

which means that the largest PBHs form at the present day, with mass

𝑚max ≈ 0.88 × 10−10 𝑀⊙ ×
(
𝐺𝜇

10−11

)3
. (2.151)

Coincidentally, this corresponds to the ‘sublunar’ mass range—one of the few regimes where there are no
constraints preventing PBHs from making up the totality of DM [176, 177] (see figure 0.13). However,
the majority of cusp-collapse PBHs have masses much smaller than this.

Inserting equation (2.149) into the expression (0.104) we introduced in section 0.3.4, we find that the
mass spectrum of cusp-collapse PBHs is

𝑓 (𝑚) = 2𝑁c

𝜌cdm

∫ 𝑡0

0
d𝑡
𝑎3(𝑡 )
𝑡 4 F

(
𝐺𝑚

(𝐺𝜇)3𝑡

)
, (2.152)

which is shown in figure 2.16 for a representative value of𝐺𝜇. In general the integral in equation (2.152)
is broken into two parts, corresponding to the different scaling solutions in the matter and radiation
eras. Note that equation (2.152) includes only the energy density due to the rest mass of the PBHs; their
kinetic energy at formation is larger by a factor of 1/(𝐺𝜇), though this will eventually be redshifted away.
This large kinetic energy will likely lead to interesting phenomenology and constraints which are not

147



2 Nonlinear gravitational-wave memory from cosmic strings

10−34 10−29 10−24 10−19 10−14 10−9

m/M�

10−43

10−39

10−35

10−31

10−27

10−23

10−19

10−15

f
(m

)

model 1

model 2

model 3

evaporated PBHs

< 1 PBH per Universe

Figure 2.16: The present-day PBH mass spectrum (2.152) for the three standard models of the cosmic string loop
network with𝐺𝜇 = 10−11. The solid and dashed lines correspond to PBHs formed in the radiation and matter
eras respectively. The cutoffs at small and large masses are given by equations (2.124) and (2.151). The magenta
region represents PBHs which have evaporated by the present day. The grey region corresponds to there being
less than one PBH of that mass in the observable Universe.

captured by traditional PBH analyses, as these generally assume the PBHs are formed with negligible
peculiar velocities. We plan to explore this in future work.

Equation (2.152) does not include evaporation due to Hawking radiation, and is therefore only valid
for masses greater than 𝑚∗ ≈ 5 × 1014 g ≈ 3 × 10−19𝑀⊙ , with PBHs lighter than this evaporating in
less than a Hubble time [176]. Nonetheless, the form of 𝑓 (𝑚) for masses below𝑚∗ can be useful for
deriving constraints on the overall mass spectrum due to evaporation effects. For small masses in the
radiation era, equation (2.152) approaches a time-independent power law 𝑓 (𝑚) = 𝑓∗(𝑚/𝑚∗)−1/2, with
𝑓∗ a constant depending on𝐺𝜇 and on the network model. The negative exponent means that the mass
spectrum is dominated by very small PBHs, and that the strongest constraints on cusp collapse come from
their evaporation. In fact, this is the same power law as the mass spectrum resulting from the collapse
of circular loops [337, 400], but with a different pre-factor. In the circular collapse case, the pre-factor
depends on the fraction of circular loops, which is unknown; in our case, the pre-factor depends only on
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𝐺𝜇, which we can therefore constrain directly. Using the most up-to-date constraints from James-Turner
et al. [337], we find16

𝐺𝜇 ≲


6.0 × 10−7 for model 1,
1.2 × 10−6 for model 2,
9.3 × 10−7 for model 3,

(2.153)

which in turn gives a constraint on the total fraction of DM made up by cusp-collapse PBHs,

𝜌pbh

𝜌cdm
≡

∫ ∞

𝑚∗

d𝑚
𝑓 (𝑚)
𝑚

≲


2.0 × 10−10 for model 1,
7.4 × 10−11 for model 2,
8.0 × 10−10 for model 3.

(2.154)

The constraint (2.153) on 𝐺𝜇 is comparable to those set by CMB analyses [47, 419], and is almost
independent of the network model. This constraint is set by the damping of small-scale CMB anisotropies
due to PBHs decaying at recombination [182, 597], and is orders of magnitude stronger than the𝛾 -ray
constraint [337]. It is likely to become more stringent with future CMB missions, and with similar
analyses from upcoming 21 cm intensity-mapping experiments [398, 527]. For now, however, it is unable
to compete with the constraints on the order of𝐺𝜇 ≲ 10−11 coming from GW observations.

2.6 .4 A unique BH population

We seen in section 2.5.3 that cusp-collapse PBHs are universally formed with dimensionless spins of
𝜒 = 2/3, regardless of the loop size ℓ or the string tension 𝐺𝜇.17 For sufficiently large rest masses
𝑚 ≫ 𝑚∗, this initial spin value is not affected by Hawking radiation, and survives to the present day [79].
This is interesting because it means that cusp-collapse PBHs occupy a unique region of the ‘Regge
plane’ [83, 118, 155] (i.e., the BH mass-spin parameter space), as we illustrate in Fig 2.17.

Spins of 𝜒 ≈ 2/3 are common amongst astrophysical BHs. In particular, this is a very natural value
for BHs formed from binary mergers like those observed by LIGO/Virgo [22]; the majority of such
binaries are approximately equal-mass with small initial spins [23, 269], which correspond to final spins
of 𝜒 ≈ 0.687 [479]. SMBHs in active galactic nuclei are also observed to have large spins 𝜒 ≳ 0.6,
due to accretion and prior mergers [154]. However, such astrophysical processes are unable to create
subsolar-mass BHs, which dominate the cusp-collapse PBH mass spectrum for realistic values of𝐺𝜇, cf.
figure 2.16.

On the other hand, subsolar masses are generally possible in other PBH formation mechanisms, but
these mechanisms are unable to generate spins 𝜒 ≈ 2/3 like those resulting from cusp collapse. ‘Con-
ventional’ PBHs formed from collapsing overdensities during radiation domination are typically born
with small spins of order 𝜒 ∼ 0.01 [193, 229, 428]. These initially low-spinning PBHs can acquire large
spins through accretion, saturating the Thorne bound 𝜒 ≈ 0.998 [541], but this process only takes place

16These constraints are phrased in terms of a normalisation constant 𝑐string, with the CMB constraint giving 𝑐string < 2 × 10−12.
This can be translated to our mass spectrum using 𝑐string = 2𝑓∗𝛺cdm.

17Note that this is the ‘naïve’ zero-radiation value, and that a fully general-relativistic calculation would likely give a different value
for the final spin. However, our argument in this section still holds, provided that the true value of 𝜒 is significantly larger than
zero and less than unity.
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Figure 2.17: The location of various primordial and astrophysical BH populations in the Regge plane (BH mass-
spin parameter space). Blue crosses show the initial and final BHs for each of the ten binary BH mergers in
LIGO/Virgo’s first GW Transient Catalogue (GWTC-1) [22]; the spin distribution is noticeably bimodal, with
initial BHs having low spins 𝜒 ≲ 0.2 and final BHs have large spins 𝜒 ≈ 0.7. (The spins of the initial BHs are not
confidently measured in GWTC-1, so the spin values and uncertainties plotted here are merely heuristic and are
estimated from the inspiralling binary’s effective aligned spin 𝜒eff .) Green crosses show the SMBHs catalogued
in Brenneman et al. [154]. The grey region shows the expected parameter space for ‘conventional’ PBHs formed
from overdensities collapsing during radiation domination, including the effects of accretion as calculated in
De Luca et al. [230]. The magenta region shows a possible population of near-extremal PBHs formed during a
period of early matter domination. The red region shows cusp-collapse PBHs, shaded according to their mass
spectrum for𝐺𝜇 = 10−11, cf. figure 2.16. All of the PBH populations are cut off at𝑚∗ ≈ 3 × 10−19𝑀⊙ , due to
evaporation through Hawking radiation.

within a Hubble time if the PBHs in question are sufficiently massive,𝑚 ≳ 50𝑀⊙ [230]. Subsolar-mass
PBHs are extremely inefficient at accreting matter, and remain essentially non-spinning.

Subsolar-mass PBHs can have large spins if they form from collapsing overdensities during a hypothetical
period of early matter domination [179, 299, 385, 462], as radiation pressure is then unable to dissipate
angular momentum during the collapse. However, these PBHs are expected to have near-extremal spins
𝜒 ≈ 1, which are easily distinguishable from the 𝜒 = 2/3 prediction of cusp collapse.

We therefore see that any observation of a subsolar-mass BH with a large (but non-extremal) spin
𝜒 ≈ 2/3 would be incompatible with any of the other BH formation mechanisms mentioned here, and
would be a ‘smoking gun’ signature of cusp collapse, and of cosmic strings more generally.
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2.7 Summary and outlook

In this chapter, we have thoroughly explored the nonlinear GW memory associated with cusps and kinks
on Nambu-Goto cosmic strings, deriving detailed analytical waveform models for the memory GWs,
including the ‘memory of the memory’ and other higher-order memory effects. These are among the first
memory observables computed for a cosmological source of GWs, with previous literature having focused
almost entirely on astrophysical sources.

The leading-order cusp memory waveform (2.64) that we have found is strikingly similar to the primary
GW signal from the cusp (2.36), with the same characteristic∼ 𝑓 −4/3 frequency power-law. However, one
very important difference is that this memory signal is emitted in all directions, unlike the primary signal
which is confined to a narrow beam of width 𝜃b ∼ 𝑓 −1/3. As a result, we find that the total GW energy
radiated by the cusp memory diverges for a Nambu-Goto (i.e., zero-width) loop. This divergence can be
regularised by introducing a cutoff at the scale of the string width 𝛿 ∼ ℓPl/

√︁
𝐺𝜇, but this then introduces

powers of ℓ/𝛿 ≫ 1 to the higher-order memory terms, causing the sum of all memory contributions to
diverge for loops of length ℓ ≳ 𝛿/(𝐺𝜇)3.

In section 2.3.9 we have argued that the most plausible explanation for this unphysical memory diver-
gence is the assumption that the spacetime containing the cosmic string loop is well-described by a flat
background with linear perturbations. We have suggested that some strong-gravity mechanism must kick
in on loops of length ℓ ≳ 𝛿/(𝐺𝜇)3 to suppress the high-frequency GW emission from cusps, thereby
curing the divergence. In section 2.5, we have investigated exactly such a mechanism: the collapse of
a small cosmic string segment near the cusp to form a PBH. Remarkably, this cusp-collapse process
is predicted to occur for all loops of length ℓ ≳ 𝛿/(𝐺𝜇)3—exactly the same loops for which we have
diagnosed the memory divergence. We have shown explicitly that if cusp collapse does indeed occur for
these loops, the corresponding GW memory is strongly suppressed, and the divergence is cured.

We have also calculated the memory emission associated with kinks, and have shown that this is
suppressed due to interference between GWs emitted by the kink at different points in its history. There is
thus no situation in which the kink memory signal diverges; this accords with the cusp-collapse description,
as kinks are not predicted to form PBHs in that scenario.

In section 2.6 we have investigated the observational consequences of our results, focusing on the
implications for the GW background. We find that by requiring the string tension to agree with existing
observational bounds, and by invoking cusp collapse to prevent the memory from diverging, the resulting
memory signal is very strongly suppressed, and is not likely to be detected by any current or upcoming GW
observatories. Meanwhile, the primary signal from cusps is reduced by a factor of≈ 1/4 at low frequencies
due to cusp collapse, slightly weakening existing bounds on the string tension. Of course, if cusp collapse
does not occur, then it is possible that large loops could source much stronger memory signals; however,
one would then need an alternative mechanism for resolving the cusp divergence.

One promising avenue for testing these ideas lies in observing the PBHs themselves. By calculating the
angular momentum of the string segment captured behind the horizon, we have shown that cusp-collapse
PBHs are highly spinning, with dimensionless spin parameter equal to two-thirds of the extremal Kerr
value, 𝜒 = 2/3. This spin is a universal property of the formation mechanism, and is independent of

151



2 Nonlinear gravitational-wave memory from cosmic strings

the loop size ℓ and string tension𝐺𝜇. To the best of our knowledge, cusp collapse is the only known
primordial or astrophysical mechanism for generating subsolar-mass BHs with large but sub-extremal
spins. The observation of such a BH would therefore be a ‘smoking gun’ signal of cusp collapse, and of
cosmic strings more generally. The fact that cusp-collapse PBHs are born with ultrarelativistic velocities
will undoubtedly also give rise to some interesting phenomenology, and may allow us to place new
constraints on their abundance, aside from those in the standard PBH literature. It would also be very
interesting to calculate the merger rate of cusp-collapse PBH binaries, as well as the corresponding GWB
spectrum [104, 207, 411, 467, 468, 579], as consistency with LIGO/Virgo observations (in particular
the subsolar-mass search [3, 21, 26, 404]) would provide another independent constraint on the string
tension; we leave this for future work.

Our work in this chapter demonstrates the importance of considering the nonlinear memory associated
with a broader class of GW sources than just compact binaries; we have shown that the memory effect is
interesting not just from an observational point of view, but also as a tool for sharpening our theoretical
understanding and modelling of said GW sources. As an unexpected by-product of our analysis, we have
shown that the standard Nambu-Goto description of cusps is unphysical, and that strong gravity effects
(possibly including PBH formation) could play an important rôle in a more complete understanding of
their dynamics. This motivates further work to better understand cusps in full GR, including nonlinear
gravitational effects beyond those considered here, and thereby understand whether cusp collapse does
indeed take place, with the ultimate goal of computing reliable waveform predictions for GW observatories.
It would also be very interesting to study the linear memory associated with cusps, and to understand
how this contributes to the total GW emission; however, such a study would require us to go beyond the
Nambu-Goto approach adopted here. More generally, our results motivate a broader examination of the
nonlinear memory effect in GW astronomy and cosmology, to see what other surprises may be in store.
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gravitational-wave detectors

In section 0.4 we discussed several current and near-future experimental efforts to detect gravitational
waves. These experiments each hold enormous scientific potential, and together will probe a dizzying range
of exotic astrophysical and cosmological phenomena throughout the history of the Universe, including
those we covered in section 0.3. However, we saw how practical and technical limitations restrict the
sensitivity of each experiment to a narrow frequency band, leaving broad swathes of the GW frequency
spectrum essentially unexplored, as shown in figure 0.14. These gaps in the GW spectrum could contain
signals that are inaccessible to any current or planned GW observatory. Perhaps the clearest example is
the stochastic GW signal expected from a first-order phase transition: as we discussed in section 0.3.2,
this signal is sharply peaked and could, for a broad range of the physical parameter space, be missed by
all of the GW experiments we have described. FOPTs aside, there is also the distinct possibility of these
unexplored frequency bands containing completely unexpected signals, beyond just those models that
have been proposed in the literature. Discovering one of these ‘unknown unknowns’ could revolutionise
our understanding of the Universe.

This problem motivates us to explore alternative experimental techniques that can bridge the observa-
tional gaps that exist in the GW frequency spectrum. In this chapter we explore one such possibility, which
is to search for GWs by studying their influence on binary systems. Rather than searching for oscillations
in the proper distance between the test masses in an interferometer (as in LIGO/Virgo/KAGRA, etc.), or
between pulsars and the Earth (as in PTAs), we consider here the GW-induced oscillations between two
freely-falling astronomical bodies in a gravitationally-bound orbit. While these oscillations are extremely
challenging to observe directly for any realistic binary, we show below that they can leave lasting imprints
on the binary’s orbit—particularly if they occur at an integer multiple of the binary’s orbital frequency, as
this causes the perturbations to be resonantly amplified (as we will see below). For persistent GW signals,
these imprints accumulate over time, eventually giving rise to observable deviations which can be used to
infer the GW amplitude, turning the binary into a dynamical GW detector (see figure 3.1). This idea has a
long history [122, 194–197, 277, 328, 329, 391, 416, 417, 429, 434, 489, 553], and has been used to search
for GWs with the orbit of the binary pulsar B1913+16 [323]. Similar ideas have also been used to search
for orbital changes induced by coherently oscillating ultralight DM fields [80, 81, 139, 140, 236, 395].
Nonetheless, this ‘binary resonance’ effect has received relatively little attention in the GW community,
and has not yet been exploited to its full potential.

In this chapter we develop, from first principles, a new formalism for calculating the GW-induced
evolution of a generic binary system. While we could, in principle, use binary resonance to search for any
GW signal morphology, there are two practical considerations which lead us to narrow our scope here:
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Figure 3.1: Cartoon illustration of the binary resonance effect. Stochastic fluctuations in the background spacetime
geometry due to incoming GWs perturb the trajectories of two orbiting masses, causing cumulative changes to
their orbital elements.

1. We require the GW signal to be persistent, so that the GW-induced perturbations to the binary’s
orbit can accumulate over time and eventually reach a detectable level.

2. We neglect narrowband signals whose power is concentrated in a relatively small range of frequencies,
since the probability of the signal’s frequency band overlapping with one of the resonant frequencies
of the binary is then too small for the searches to have much impact.

As we saw in section 0.2, the Universe provides us with a persistent, broadband GW signal that satisfies
these conditions: the stochastic GW background. We therefore focus on the response of a binary system
to the GWB.

The stochastic nature of the signal means that we cannot deterministically calculate the evolution of a
binary coupled to the GWB; instead we treat each of the binary’s orbital elements as a time-dependent
random variable, and study how the statistics of the orbital perturbations evolve over time. Our key
result is a secularly-averaged Fokker-Planck equation (FPE), which improves upon previous results by fully
specifying the evolution of the joint probability distribution for all six orbital elements. (Compare with
Hui et al. [323], who calculated only the variance of the distribution, and focused on just one orbital
element: the period.) By comparing solutions of this FPE with high-precision orbital data from various
binary systems, one can place stringent new constraints on the GWB at frequencies that are inaccessible
to all other current and future GW observatories.

The remainder of this chapter is structured as follows. In section 3.1 we give a brief, self-contained
overview of Keplerian orbits, orbital perturbations, and the formalism of osculating orbital elements. This
section is a review of standard results, focusing only on the tools we need to tackle the binary resonance
problem; for more details on the various points we discuss, we refer the reader to, e.g., Brouwer and
Clemence [156], Murray and Dermott [432], or Poisson and Will [459]. In section 3.2 we specialise this
formalism to perturbations from the GWB, and develop a FPE for the orbital elements, expressing the
coefficients of the equation in terms of GW transfer functions. In section 3.3 we write these coefficients
explicitly as functions of the orbital elements, and briefly discuss their properties (the technical details of
this calculation are given in appendix D). In section 3.4 we obtain some exact late-time results for the
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case where the binary’s eccentricity is held fixed at zero, which greatly simplifies the FPE. In section 3.5
we tackle the more complicated general-eccentricity case, consider practical approaches for solving the
FPE on observational timescales, and present some example results for the Hulse-Taylor binary pulsar
B1913+16. In section 3.6 we develop the necessary statistical formalism to search for GWB-induced orbital
perturbations in observational data, discussing how to compute upper limits and sensitivity forecasts,
and how to apply these tools to pulsar timing and laser-ranging experiments. In section 3.7 we use this
formalism to calculate forecast constraints on the GWB spectrum from our methods. We show that
binary resonance searches can fill the ‘μHz gap’ between LISA and PTAs, probing a unique region of the
FOPT parameter space, and potentially helping to shed light on the common process signal detected by
NANOGrav.

3.1 Binary dynamics

In this section we introduce the machinery of osculating orbital elements—an extremely useful formalism
for describing perturbations to binary orbits. We start by recalling the basic properties of Keplerian orbits
(i.e., orbits of two point masses interacting only through Newtonian gravity), before introducing the
equations of motion (EoMs) for the osculating elements, and discussing the most important contribution
to these EoMs from relativistic effects. We also introduce alternative sets of orbital elements that are useful
in cases where the eccentricity or inclination of the orbit are small.

3.1 .1 Keplerian orbits

We start with a Keplerian binary, working in cylindrical coordinates (𝒓 , 𝜽 , ℓ̂) in a frame with the centre of
mass fixed at the origin. We also introduce a fixed Cartesian reference frame (�̂� , �̂� , 𝒛 ), such that the line
of sight of the observer is in the positive 𝒛 direction. The unperturbed EoM for the separation vector 𝒓 is

¥𝒓 + 𝐺𝑀
𝑟 2 𝒓 = 0, (3.1)

where 𝑟 ≡ |𝒓 | is the radial separation, 𝒓 ≡ 𝒓 /𝑟 is the radial unit vector, and𝑀 ≡ 𝑚1+𝑚2 is the total mass.
We define the energy and angular momentum of the binary (in units of the reduced mass𝜇 ≡ 𝑚1𝑚2/𝑀 )
by

E =
1
2
¤𝒓 · ¤𝒓 − 𝐺𝑀

𝑟
, ℓ = 𝒓 × ¤𝒓 = 𝑟 2 ¤𝜃 ℓ̂. (3.2)

For the total angular momentum we write ℓ ≡ |ℓ | = 𝑟 2 ¤𝜃 . These are all conserved under the Newtonian
EoM (3.1), since

¤E = ¤𝒓 ·

(
¥𝒓 + 𝐺𝑀

𝑟 2 𝒓

)
= 0, ¤ℓ = 𝒓 × ¥𝒓 = 𝒓 ×

(
−𝐺𝑀
𝑟 2 𝒓

)
= 0, (3.3)

where we used ¤𝑟 = ¤𝒓 · 𝒓 . The fact that ¤ℓ = 0 means that the binary orbit is confined to a fixed 2D plane,
which is specified with respect to the (�̂� , �̂� , 𝒛 ) reference frame by two angles: the inclination 𝐼 , which is
the angle between the binary’s angular momentum vector ℓ and the observer’s line of sight 𝒛 , and the
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longitude of ascending node �, which is the angle between �̂� and the point where the orbit passes through
the reference plane with positive velocity in the 𝒛 direction. (These angles are illustrated in figure 3.2.)

We can find the shape of the orbit in this plane by integrating equation (3.1), yielding a family of
elliptical solutions

𝑟 =
ℓ2/(𝐺𝑀 )
1 + 𝑒 cos𝜓

, E = −𝐺𝑀
2𝑎

, ℓ =
√︁
𝐺𝑀𝑎 (1 − 𝑒2), (3.4)

with the shape of the ellipse described by its semi-major axis 𝑎 and eccentricity 𝑒 . Here we have introduced
the true anomaly𝜓 as the angular position of the orbit within the orbital plane, defined such that the
pericentre (minimum separation) occurs at𝜓 = 0. The point at which this occurs is defined by the
argument of pericentre𝜔 ≡ 𝜃 −𝜓 , which is measured relative to the ascending node. Since𝜔 is constant,
the orbit is closed and the motion of the binary is periodic in time, with period𝑃 related to the semi-major
axis by Kepler’s third law,

𝐺𝑀

𝑎3 =

(
2π
𝑃

)2
. (3.5)

In what follows, we work entirely in terms of the period rather than the semi-major axis, as the former is
more closely linked to the resonant frequencies of the orbit.

The five constants (𝑃 , 𝑒 , 𝐼 ,�, 𝜔) are almost enough information to specify a particular Keplerian
orbit; all that remains is to specify the time at which the binary is at pericentre, 𝑡0. In practice, it is more
convenient to replace 𝑡0 with the compensated mean anomaly,

𝜀 ≡ 2π
𝑃

(𝑡 − 𝑡0) −
∫ 𝑡

0
d𝑡 ′

2π
𝑃 (𝑡 ′) , (3.6)

as this is more well-behaved when the orbit is perturbed [156]. Note that in the absence of perturbations
this reduces to 𝜀 = −2π𝑡0/𝑃 . We call the set (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀) the orbital elements of a binary.

3.1 .2 Perturbations and osculating orbits

Now suppose the binary is acted upon by some small perturbing force [140, 161, 323, 432]

¥𝒓 + 𝐺𝑀
𝑟 2 𝒓 = δ¥𝒓 = 𝑟 (F𝑟𝒓 + F𝜃𝜽 + Fℓ ℓ̂). (3.7)

(The factor of 𝑟 here is included for later convenience, as the GW perturbations we consider are propor-
tional to the orbital separation.) Inserting this into equation (3.3) gives

¤E = ¤𝒓 · δ¥𝒓 = 𝑟 ¤𝑟F𝑟 + 𝑟 2 ¤𝜃F𝜃 , ¤ℓ = 𝒓 × δ¥𝒓 = 𝑟 2F𝜃 ℓ̂ − 𝑟 2Fℓ𝜽 , (3.8)

so the binary’s energy and angular momentum are no longer constant. As a result, the binary is no longer
described by a fixed set of orbital elements. However, the orbit is still tangent to some Keplerian ellipse
at each moment in time. We therefore define (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀) as functions of time which track the
evolution of this tangent ellipse; these are called the osculating orbital elements.
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Figure 3.2: Schematic diagram of a Keplerian orbit. The plane of the orbit (shown in blue) is defined relative to
the fixed reference frame (�̂� , �̂� , 𝒛 ) (shown in black) by the inclination 𝐼 and the longitude of ascending node
�, while the orientation of the orbit within this plane is specified by the argument of pericentre 𝜔 . The true
anomaly𝜓 acts as an angular coordinate for the position of the orbit within the orbital plane, measured relative
to the pericentre. The polarisation tensors describing the effects of an incoming plane GW are described in
terms of the basis (�̂� , �̂� ,𝒗 ) (shown in red), which is related to the reference frame by the angles 𝜗 and 𝜙 . (Note
that the wavelength of the GW is not shown to scale here—our analysis assumes a wavelength much larger than
the size of the orbit.)

By writing the osculating elements as functions of the energy E and angular momentum ℓ we can
translate equation (3.8) into a set of EoMs for the osculating elements. A full derivation along these lines
is given in, e.g., Burns [161] or Murray and Dermott [432]; here we simply quote the resulting set of
equations,

¤𝑃 =
3𝑃 2𝛾

2π

[
𝑒 sin𝜓F𝑟

1 + 𝑒 cos𝜓
+ F𝜃

]
, ¤𝑒 =

¤𝑃𝛾 2

3𝑃𝑒
− 𝑃𝛾 5F𝜃

2π𝑒 (1 + 𝑒 cos𝜓 )2 ,

¤𝐼 = 𝑃𝛾 3 cos 𝜃Fℓ
2π(1 + 𝑒 cos𝜓 )2 ,

¤� =
tan 𝜃
sin 𝐼

¤𝐼 ,

¤𝜔 =
𝑃𝛾 3

2π𝑒

[
(2 + 𝑒 cos𝜓 ) sin𝜓F𝜃

(1 + 𝑒 cos𝜓 )2 − cos𝜓F𝑟
1 + 𝑒 cos𝜓

]
− cos 𝐼 ¤�,

¤𝜀 = − 𝑃𝛾 4F𝑟
π(1 + 𝑒 cos𝜓 )2 −𝛾 (cos 𝐼 ¤� + ¤𝜔),

(3.9)
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where we have defined the dimensionless angular momentum,

𝛾 ≡
√

1 − 𝑒2 =
ℓ

√
𝐺𝑀𝑎

. (3.10)

Note that the size and shape of the orbit (determined by 𝑃 and 𝑒 ) is only affected by forces within the
plane (i.e., F𝑟 and F𝜃 ), while the plane of the orbit (determined by 𝐼 and �) is only affected by forces
normal to the plane (i.e., Fℓ). The radial and angular phases of the orbit (determined by 𝜔 and 𝜀) are
affected by both.

3.1 .3 Secular averaging of the perturbations

The EoMs (3.9) for the osculating elements are somewhat cumbersome to solve, as they each oscillate over
the course of an orbital period due to their dependence on the true anomaly𝜓 (𝑡 ). In many situations
however (including the present application to GW detection), the perturbing forces F𝛼 are small, and the
resulting changes to the orbital elements therefore occur very slowly, on timescales much longer than the
orbital period. It is then possible to decouple the fast oscillations of the true anomaly from the much
more gradual evolution of the orbital elements by calculating a secular average of the EoMs,

⟨ ¤𝑋 ⟩sec ≡
∫ 𝑡0+𝑃

𝑡0

d𝑡
𝑃

¤𝑋 , (3.11)

where 𝑋 ∈ (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀). The notation ⟨· · ·⟩sec here is chosen to avoid confusion with plain angle
brackets ⟨· · ·⟩ we use below to denote an ensemble average of a random variable. This procedure integrates
out the fast oscillations that occur on timescales ≤ 𝑃 , leaving just the long-timescale dynamics of the
system that we are interested in. Note that we treat the orbital elements themselves as constant inside the
integral, which only makes sense in the limit where they are slowly-varying.

It is usually easier to evaluate the secular average if we replace the time integral in equation (3.11) with
an integral over the true anomaly. We can do this by noticing that

d𝜓
d𝑡

= ℓ/𝑟 2 =
2π
𝑃𝛾 3 (1 + 𝑒 cos𝜓 )2, (3.12)

where we have used equations (3.2), (3.4), and (3.5). The secular average can therefore be written as

⟨ ¤𝑋 ⟩sec =

∫ 2π

0

d𝜓
2π

𝛾 3 ¤𝑋
(1 + 𝑒 cos𝜓 )2 . (3.13)

In order to apply this average to the EoMs (3.9), we need to know the form of the perturbing forces F𝛼 ,
which in general will vary over the course of the orbit.

3.1 .4 Secular evolution due to relativistic effects

In section 3.2, we use equation (3.9) to calculate the perturbations to the osculating orbital elements caused
by resonance with the GWB. However, we can use the same set of equations to calculate the perturbations
caused by relativistic corrections to the equations of motion, which are particularly important for binaries
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with short periods. Following Poisson and Will [459], we write the relativistic force components to leading
post-Newtonian (PN) order as

F𝑟 =
(

2π
𝑃

)2𝑣2
𝑃

𝛾 8 (1 + 𝑒 cos𝜓 )3
[
3 −𝜂 − 𝑒2(1 + 3𝜂) + 𝑒 (2 − 4𝜂) cos𝜓 + 𝑒2 8 −𝜂

2
sin2𝜓

]
,

F𝜃 =

(
2π
𝑃

)2 2𝑒𝑣2
𝑃

𝛾 8 sin𝜓 (1 + 𝑒 cos𝜓 )4(2 −𝜂), Fℓ = 0,
(3.14)

where

𝑣𝑃 ≡
(

2π𝐺𝑀
𝑃

)1/3
=

√︂
𝐺𝑀

𝑎
(3.15)

is the binary’s rms velocity, and we recall from section 0.3.1 that𝜂 ≡ 𝜇/𝑀 is the dimensionless mass ratio.
Inserting these expressions into equation (3.13), we find that the only non-vanishing secular perturbations
to the osculating elements are

⟨ ¤𝜔⟩sec =
6π𝑣2

𝑃

𝑃𝛾 2 , ⟨ ¤𝜀⟩sec =
2π𝑣2

𝑃

𝑃

(
6 − 7𝜂 − 15 − 9𝜂

𝛾

)
, (3.16)

where the first line is the famous perihelion precession, which provided some of the earliest observational
evidence for GR. These are both 1PN corrections (i.e., order 𝑣2

𝑃
).

Note that the above implies that the binary’s period and eccentricity are conserved at 1PN order.
However, since these are typically the most precisely-measured orbital elements, it is worth including
their leading-order relativistic evolution, even if this is at higher PN order and is thus much smaller than
the terms in equation (3.16) for most binaries. As we saw in section 0.3.1, this leading-order evolution of
the period and eccentricity is due to GW radiation reaction, and can be calculated by applying simple
energy-balance arguments to the unperturbed Keplerian orbit [455], giving

⟨ ¤𝑃 ⟩sec = −
192π𝜂𝑣5

𝑃

5𝛾 7

(
1 + 73

24𝑒
2 + 37

96𝑒
4
)
, ⟨ ¤𝑒 ⟩sec = −

608π𝜂𝑣5
𝑃

15𝑃𝛾 5

(
𝑒 + 121

304𝑒
3
)
. (3.17)

These are just the period and eccentricity decay rates we found in equations (0.86) and (0.87), albeit with
slightly different notation here. We see that both are 2.5PN effects (i.e., order 𝑣5

𝑃
). The inclination and

longitude of ascending node are both conserved at this PN order.

3.1 .5 Small-eccentricity and small-inclination orbits

For binaries where the eccentricity is small (say, 𝑒 ≲ 10−3) the argument of pericentre 𝜔 becomes poorly-
defined, as it becomes increasingly difficult to distinguish the point of closest approach as the orbit becomes
increasingly circular. This in turn means that the compensated mean anomaly 𝜀 becomes poorly-defined,
as this is defined relative to the time at which the binary is at pericentre, 𝑡0. These issues can be resolved by
defining an alternative set of orbital elements,

𝜁 ≡ 𝑒 sin𝜔, 𝜅 ≡ 𝑒 cos𝜔, 𝜉 ≡ 𝜔 + 𝜀. (3.18)
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3 Binary systems as dynamical gravitational-wave detectors

The first two quantities here are sometimes called the ‘Laplace-Lagrange eccentric parameters’, while the
latter is the compensated mean argument. We can then describe the orbit of a near-circular binary in
terms of the alternative set of osculating elements (𝑃 , 𝜁 ,𝜅, 𝐼 ,�, 𝜉 ) [387, 432]. These evolve according to

¤𝜁 = ¤𝑒 sin𝜔 + ¤𝜔𝑒 cos𝜔, ¤𝜅 = ¤𝑒 cos𝜔 − ¤𝜔𝑒 sin𝜔, ¤𝜉 = ¤𝜔 + ¤𝜀, (3.19)

with ¤𝑒 , ¤�, ¤𝜔 , and ¤𝜀 given by equation (3.9). For the relativistic perturbations (3.14), we thus have

⟨ ¤𝜁 ⟩sec =
6π𝑣2

𝑃

𝑃

(
𝜅 − 304

45 𝜂𝑣
3
𝑃 𝜁

)
, ⟨ ¤𝜅⟩sec = −

6π𝑣2
𝑃

𝑃

(
𝜁 + 304

45 𝜂𝑣
3
𝑃𝜅

)
, ⟨ ¤𝜉 ⟩sec = −

4π𝑣2
𝑃

𝑃
(3 −𝜂),

(3.20)
where we have neglected O(𝑒2) terms. Similarly, � is ill-defined for orbits with very small inclination, so
in this case we define

𝑝 ≡ 𝐼 sin �, 𝑞 ≡ 𝐼 cos �, 𝜆 ≡ � + 𝜉 , (3.21)

and describe the orbit using (𝑃 , 𝜁 ,𝜅,𝑝, 𝑞, 𝜆).

3.2 Resonant gravitational-wave perturbations

In this section we calculate the evolution of the osculating orbital elements of a binary system due to
resonance with the GWB. We start by specifying the perturbing force associated with an incoming plane
GW in the limit where the wavelength is much larger than the size of the orbit (i.e., the small-antenna
limit). This allows us to write down a Langevin equation describing individual random realisations of
the stochastic evolution of the osculating elements. Using the statistical properties of the GWB, we then
derive a secularly-averaged Fokker-Planck equation which describes the evolution of the full statistical
distribution of the orbital elements over timescales much longer than the binary period.

3.2 .1 Coupling to the gravitational-wave polarisation modes

Using the results of section 0.1.5—in particular, equation (0.30)—we can express the response of a binary
to an impinging plane GW in the proper detector frame as [406, 429]

δ¥𝑟 𝑖 = 1
2
¥ℎ𝑖 𝑗𝑟𝑗 , (3.22)

so that the resulting evolution of the binary is described in terms of the perturbing force terms

F𝑟 =
1
2
¥ℎ𝑖 𝑗𝑟 𝑖𝑟 𝑗 , F𝜃 =

1
2
¥ℎ𝑖 𝑗𝑟 𝑖 𝜃 𝑗 , Fℓ =

1
2
¥ℎ𝑖 𝑗𝑟 𝑖 ℓ̂ 𝑗 , (3.23)

where ℎ𝑖 𝑗 (𝑡 ) is the TT part of the metric perturbation at the position of the binary’s centre of mass.
Carrying out a plane-wave decomposition as discussed in section 0.1.4,

ℎ𝑖 𝑗 (𝑡 ) =
∫
𝑆2

d2�̂� 𝑒𝐴𝑖 𝑗 (�̂�)ℎ𝐴 (𝑡 , �̂�), (3.24)
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these force terms can thus be written as

F𝛼 =
1
2

∫
𝑆2

d2�̂� 𝑒𝐴𝑖 𝑗𝑟
𝑖 �̂� 𝑗 ¥ℎ𝐴 , (3.25)

where 𝛼 runs over the cylindrical coordinates (𝑟 , 𝜃 , ℓ).

As we discussed in section 0.1.5, equation (3.22) is only correct in the limit where the GW wavelength
𝜆 is much larger than the distance between the two objects in question, which in this case is set by the
semi-major axis of the binary’s orbit, 𝑎 ≪ 𝜆. Using Kepler’s third law (3.5), this condition can be
rewritten as 𝑓 𝑃 ≪ 1/𝑣𝑃 , where 𝑓 is the GW frequency. Since we are interested in GW frequencies which
are harmonics of the binary period (𝑓 = 𝑛/𝑃 for some 𝑛 ∈ Z+), this tells us that the analysis below, based
on equation (3.22), is only valid for harmonics that satisfy 𝑛 ≪ 1/𝑣𝑃 . This is not an impediment, since
in the cases we are interested in the binary is sub-relativistic, 𝑣𝑃 ≪ 1, and as we will see in later sections,
the strongest GW contribution to the binary’s evolution typically comes from the lowest few harmonics
anyway.

3.2 .2 Langevin formulation

The stochastic evolution of the binary is described by the evolution equations derived in section 3.1.2,
with the perturbing force terms given by equation (3.25). All this can be rewritten as a coupled set of
nonlinear ordinary differential equations (ODEs),

¤𝑋𝑖 (𝑿 , 𝑡 ) =𝑉𝑖 (𝑿 ) + 𝛤𝑖 (𝑿 , 𝑡 ), (3.26)

where 𝑋𝑖 runs over the set of orbital elements (either (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀), or the small-eccentricity and/or
small-inclination alternatives described in section 3.1.5),𝑉 is the deterministic drift term due to other
perturbations (e.g., the relativistic effects described in section 3.1.4), and 𝛤 is the stochastic diffusion
term due to resonance with the GWB. ODEs of this form, in which one of the source terms is a random
variable rather than a deterministic function, are called Langevin equations [484]. Rather than possessing
a unique, deterministic solution for a given set of initial conditions, Langevin equations are characterised
by a large number of distinct solutions, corresponding to different random realisations of the stochastic
source term 𝛤 .

In our case, 𝛤 can be written as

𝛤𝑖 (𝑿 , 𝑡 ) =
∫
𝑆2

d2�̂� 𝑇 𝐴
𝑖 (𝑋 , 𝑡 , �̂�) ¥ℎ𝐴 (𝑡 , �̂�), (3.27)

where the𝑇 𝐴
𝑖

are a set of transfer functions describing the coupling between the GWB strain and the
orbital elements. For example, using equations (3.9) and (3.25), the transfer functions for the period 𝑃
are

𝑇 𝐴
𝑃 =

3𝑃 2𝛾

4π

(
𝑒 sin𝜓

1 + 𝑒 cos𝜓
𝑟 𝑖 + 𝜃 𝑖

)
𝑟 𝑗𝑒𝐴𝑖 𝑗 . (3.28)
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However, the exact form of the transfer functions is unimportant for this section—all that matters is that
we can write the stochastic term in the form (3.27). We write out the full set of transfer functions (in
terms of their Fourier components) in appendix D.

The transfer functions are explicitly time-dependent via their dependence on trigonometric functions
of the true anomaly𝜓 (𝑡 ), due to the variation of the binary’s response over the course of each orbit. If
we neglect the secular evolution of the orbital elements on long timescales 𝑋 / ¤𝑋 ≫ 𝑃 , this means that the
transfer functions are periodic functions of time, with period equal to the binary’s orbital period 𝑃 . This
quasi-periodicity allows us to approximate each of the transfer functions as a Fourier series with period 𝑃 ,

𝑇 𝐴
𝑖 (𝑿 , 𝑡 , �̂�) =

+∞∑︁
𝑛=−∞

e−2πi𝑛𝑡 /𝑃𝑇 𝐴
𝑖 ,𝑛 (𝑿 , �̂�). (3.29)

We therefore see that the binary’s response to an incoming GW is characterised by its harmonic frequencies
𝑓 = 𝑛/𝑃 . Over long timescales, these frequencies will change due to the secular evolution of the binary
period 𝑃 . The Fourier modes𝑇 𝐴

𝑖 ,𝑛
will also vary on these timescales, as they are functions of the orbital

elements.

3.2 .3 From the Langevin equation to the Fokker-Planck equation

Solving the Langevin equation (3.26) gives individual random trajectories of the binary through parameter
space, corresponding to different random realisations of the GWB. However, we are more interested
in the ensemble of all possible random trajectories. We can describe this ensemble in terms of the time-
dependent distribution function (DF) for the orbital elements,𝑊 (𝑿 , 𝑡 ), which is defined such that the
probability of the orbital elements 𝑿 belonging to any region X of parameter space at time 𝑡 is given by
the corresponding integral over the DF,

Pr(𝑿 ∈ X|𝑡 ) =
∫
X

d𝑿 𝑊 (𝑿 , 𝑡 ). (3.30)

This DF can either be interpreted as the probability density function for the stochastic orbital elements of
an individual binary, or as the cumulative distribution for the orbital elements of a population of multiple
binaries.

Formally, we can write down the time evolution of the DF in terms of the Kramers-Moyal (KM) forward
expansion [280, 484],

∂𝑊

∂𝑡
=

∞∑︁
𝑛=1

(−)𝑛 ∂𝑛

∂𝑋𝑖1∂𝑋𝑖2 · · · ∂𝑋𝑖𝑛

(
𝐷

(𝑛)
𝑖1𝑖2 · · ·𝑖𝑛𝑊

)
, (3.31)

where repeated indices are summed over. This is determined by the KM coefficients,

𝐷
(𝑛)
𝑖1𝑖2 · · ·𝑖𝑛 (𝑿 , 𝑡 ) ≡ lim

𝜏→0

1
𝜏𝑛!

〈
𝑛∏
𝑗=1

[
𝑋𝑖 𝑗 (𝑡 + 𝜏) − 𝑋𝑖 𝑗 (𝑡 )

]〉
, (3.32)
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Figure 3.3: Heuristic illustration of a distribution function evolving according to the Fokker-Planck equation.
The drift vector𝐷 (1)

𝑖
drives the bulk movement of the distribution in one direction, while the diffusion matrix

𝐷
(2)
𝑖 𝑗

causes the distribution to become broader, as the randomness of the stochastic perturbation propagates
into an increasing randomness in the distribution.

with angle brackets indicating an ensemble average under the distribution𝑊 at time 𝑡 . Since we take the
GWB as Gaussian, the KM coefficients for orders 𝑛 ≥ 3 all vanish,1 leaving just the first two coefficients,

𝐷
(1)
𝑖

= lim
𝜏→0

1
𝜏
⟨𝑋𝑖 (𝑡 + 𝜏) − 𝑋𝑖 (𝑡 )⟩,

𝐷
(2)
𝑖 𝑗

= lim
𝜏→0

1
2𝜏

〈
[𝑋𝑖 (𝑡 + 𝜏) − 𝑋𝑖 (𝑡 )] [𝑋 𝑗 (𝑡 + 𝜏) − 𝑋 𝑗 (𝑡 )]

〉
,

(3.33)

which we call the drift vector and the diffusion matrix, respectively. The KM forward expansion (3.31)
then becomes the Fokker-Planck equation (FPE),

∂𝑊

∂𝑡
= −∂𝑖 (𝐷 (1)

𝑖
𝑊 ) + ∂𝑖∂𝑗 (𝐷 (2)

𝑖 𝑗
𝑊 ), (3.34)

with ∂𝑖 ≡ ∂/∂𝑋𝑖 . The effect of each set of coefficients is illustrated in figure 3.3.

We can calculate the KM coefficients by directly integrating the Langevin equation (3.26), from some
initial time 𝑡 where the orbital elements are ‘sharp’ (i.e., known exactly rather than randomly distributed),
𝑋𝑖 (𝑡 ) ≡ 𝑥𝑖 , over some small time interval𝜏 ,

𝑋𝑖 (𝑡 + 𝜏) − 𝑥𝑖 =
∫ 𝑡+𝜏

𝑡

d𝑡 ′ [𝑉𝑖 (𝑿 (𝑡 ′)) + 𝛤𝑖 (𝑿 (𝑡 ′), 𝑡 ′)]. (3.35)

1One could derive this explicitly by using the approach described later in this section to show that 𝐷 (3)
𝑖 𝑗𝑘

= 0, as the Pawula
theorem [450, 484] then implies that all higher-order coefficients 𝑛 > 3 must vanish in order to guarantee that the DF is
normalised.
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(This derivation closely follows that in section 3.3.2 of Risken [484], but is generalised to allow the noise
term 𝛤 to depend on the system’s parameters 𝑋𝑖 , rather than just being a function of time.) Both terms
under the integral on the right-hand side are random, due to the random spread in the orbital elements
for all times 𝑡 ′ > 𝑡 . However, we can express these in terms of the sharp values 𝑥𝑖 by Taylor expanding,

𝑉𝑖 (𝑿 (𝑡 ′)) =𝑉𝑖 (𝒙 ) + ∂𝑗𝑉𝑖 (𝒙 ) [𝑋 𝑗 (𝑡 ′) − 𝑥𝑗 ] + · · · ,

𝛤𝑖 (𝑿 (𝑡 ′), 𝑡 ′) = 𝛤𝑖 (𝒙 , 𝑡 ′) + ∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′) [𝑋 𝑗 (𝑡 ′) − 𝑥𝑗 ] + · · · .
(3.36)

Wherever 𝑋𝑖 (𝑡 ′) − 𝑥𝑖 appears on the right-hand side of equation (3.36) we can insert equation (3.35)
and iterate, such that the only orbital elements that appear are the sharp initial values 𝑥𝑖 . Then the only
randomness is through the stochastic term 𝛤𝑖 , whose statistics are completely specified in terms of the
GWB moments (3.45).

The first few terms in the iterative expansion are

𝑋𝑖 (𝑡 + 𝜏) − 𝑥𝑖 =
∫ 𝑡+𝜏

𝑡

d𝑡 ′𝑉𝑖 (𝒙 ) +
∫ 𝑡+𝜏

𝑡

d𝑡 ′ ∂𝑗𝑉𝑖 (𝒙 )
∫ 𝑡 ′

𝑡

d𝑡 ′′ [𝑉𝑗 (𝒙 ) + 𝛤𝑗 (𝒙 , 𝑡 ′′)] + · · ·

+
∫ 𝑡+𝜏

𝑡

d𝑡 ′ 𝛤𝑖 (𝒙 , 𝑡 ′) +
∫ 𝑡+𝜏

𝑡

d𝑡 ′ ∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)
∫ 𝑡 ′

𝑡

d𝑡 ′′ [𝑉𝑗 (𝒙 ) + 𝛤𝑗 (𝒙 , 𝑡 ′′)] + · · · .

(3.37)

By virtue of the time-independence of the sharp drift term𝑉𝑖 (𝒙 ), this immediately simplifies to

𝑋𝑖 (𝑡 + 𝜏) − 𝑥𝑖 = 𝜏𝑉𝑖 (𝒙 ) +
1
2
𝜏2𝑉𝑗 (𝒙 )∂𝑗𝑉𝑖 (𝒙 ) + ∂𝑗𝑉𝑖 (𝒙 )

∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡 ′

𝑡

d𝑡 ′′ 𝛤𝑗 (𝒙 , 𝑡 ′′) + · · ·

+
∫ 𝑡+𝜏

𝑡

d𝑡 ′ 𝛤𝑖 (𝒙 , 𝑡 ′) +𝑉𝑗 (𝑥)
∫ 𝑡+𝜏

𝑡

d𝑡 ′ (𝑡 ′ − 𝑡 )∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)

+
∫ 𝑡+𝜏

𝑡

d𝑡 ′ ∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)
∫ 𝑡 ′

𝑡

d𝑡 ′′ 𝛤𝑗 (𝒙 , 𝑡 ′′) + · · · .

(3.38)

Taking the first moment of equation (3.38), all terms linear in 𝛤𝑖 vanish, and we are left with

⟨𝑋𝑖 (𝑡 + 𝜏) − 𝑥𝑖 ⟩ = 𝜏𝑉𝑖 (𝒙 ) +
1
2
𝜏2𝑉𝑗 (𝒙 )∂𝑗𝑉𝑖 (𝒙 ) + · · ·

+
∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡 ′

𝑡

d𝑡 ′′
〈
𝛤𝑗 (𝒙 , 𝑡 ′′)∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)

〉
+ · · · ,

(3.39)

so that the drift vector is given by

𝐷
(1)
𝑖

=𝑉𝑖 + lim
𝜏→0

1
𝜏

∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡 ′

𝑡

d𝑡 ′′
〈
𝛤𝑗 (𝒙 , 𝑡 ′′)∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)

〉
. (3.40)

Similarly, when taking the second moment of equation (3.38) and taking the𝜏 → 0 limit, the only term
that survives for the diffusion matrix is

𝐷
(2)
𝑖 𝑗

= lim
𝜏→0

1
2𝜏

∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡+𝜏

𝑡

d𝑡 ′′
〈
𝛤𝑖 (𝒙 , 𝑡 ′)𝛤𝑗 (𝒙 , 𝑡 ′′)

〉
. (3.41)
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The fact that both sets of KM coefficients are quadratic in 𝛤 makes sense, since this is the smallest power
of 𝛤 which does not vanish when taking an expectation value. The difference, however, is that the drift
vector has a derivative acting on one factor of 𝛤 , while the diffusion matrix has no derivatives. This is
because the quadratic-in-𝛤 term appearing in the drift vector corresponds to the second-order term in
the Taylor expansion we wrote down in equation (3.36), while in the diffusion matrix this is simply the
product of two first-order Taylor expansion terms.

3.2 .4 Secular drift and diffusion

By calculating the KM coefficients from equations (3.40) and (3.41), we can now (in principle) obtain
the full DF for the orbital elements by integrating the FPE (3.34). However, in order to calculate the KM
coefficients, we must first evaluate the ensemble averages

〈
𝛤 2〉 and ⟨𝛤∂𝛤 ⟩ that appear in the integrands

of equations (3.40) and (3.41) above. We do this by rewriting these as ensemble averages over the GWB
strain. Using equations (3.27) and (3.29), we find

〈
𝛤𝑖 (𝒙 , 𝑡 ′)𝛤𝑗 (𝒙 , 𝑡 ′′)

〉
=

+∞∑︁
𝑛=−∞

+∞∑︁
𝑚=−∞

∫
𝑆2

d2�̂�

∫
𝑆2

d2�̂� ′ e2πi(𝑛𝑡 ′−𝑚𝑡 ′′)/𝑃

×𝑇 𝐴∗
𝑖 ,𝑛 (𝒙 , �̂�)𝑇

𝐴′
𝑗 ,𝑚 (𝒙 , �̂� ′)

〈 ¥ℎ𝐴 (𝑡 ′, �̂�) ¥ℎ𝐴′ (𝑡 ′′, �̂� ′)
〉
,〈

𝛤𝑗 (𝒙 , 𝑡 ′′)∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)
〉
=

+∞∑︁
𝑛=−∞

+∞∑︁
𝑚=−∞

∫
𝑆2

d2�̂�

∫
𝑆2

d2�̂� ′ e2πi(𝑛𝑡 ′−𝑚𝑡 ′′)/𝑃

×𝑇 𝐴′
𝑗 ,𝑚 (𝒙 , �̂� ′)∂𝑗𝑇 𝐴∗

𝑖 ,𝑛 (𝒙 , �̂�)
〈 ¥ℎ𝐴 (𝑡 ′, �̂�) ¥ℎ𝐴′ (𝑡 ′′, �̂� ′)

〉
,

(3.42)

so that both terms are determined by the 2-point statistics of the strain.

In section 0.2.3, we derived the second moment of the Fourier transform of the strain for a GWB that
is Gaussian, stationary, unpolarised, and isotropic, with no nontrivial phase correlations,〈

ℎ̃𝐴 ( 𝑓 , �̂�)ℎ̃∗
𝐴′ ( 𝑓

′, �̂� ′)
〉
=

3
4
𝐻 2

0 (2π| 𝑓 |)−3𝛺 ( 𝑓 )𝛿𝐴𝐴′𝛿 ( 𝑓 − 𝑓 ′)𝛿 (2) (�̂� , �̂� ′). (3.43)

Here we are interested in the statistics of the second time derivative of the strain, which is related to the
Fourier components by

¥ℎ𝐴 =
d2

d𝑡 2

∫ +∞

−∞
d𝑓 e−2πi𝑓 𝑡 ℎ̃𝐴 = −

∫ +∞

−∞
d𝑓 e−2πi𝑓 𝑡 (2π𝑓 )2ℎ̃𝐴 , (3.44)

such that

⟨ ¥ℎ𝐴 (𝑡 , �̂�) ¥ℎ𝐴′ (𝑡 ′, �̂� ′)⟩ = 3π𝐻 2
0 𝛿𝐴𝐴′𝛿 (�̂� , �̂�

′)
∫ ∞

0
d𝑓 cos[2π𝑓 (𝑡 − 𝑡 ′)] 𝑓 𝛺 ( 𝑓 ). (3.45)

165



3 Binary systems as dynamical gravitational-wave detectors

Inserting this into equation (3.42), we obtain

〈
𝛤𝑖 (𝒙 , 𝑡 ′)𝛤𝑗 (𝒙 , 𝑡 ′′)

〉
= 3π𝐻 2

0

+∞∑︁
𝑛=−∞

+∞∑︁
𝑚=−∞

∫
𝑆2

d2�̂� 𝑇 𝐴∗
𝑖 ,𝑛𝑇

𝐴
𝑗 ,𝑚

×
∫ ∞

0
d𝑓 e2πi(𝑛𝑡 ′−𝑚𝑡 ′′)/𝑃 cos[2π𝑓 (𝑡 ′ − 𝑡 ′′)] 𝑓 𝛺 ( 𝑓 ),〈

𝛤𝑗 (𝒙 , 𝑡 ′′)∂𝑗𝛤𝑖 (𝒙 , 𝑡 ′)
〉
= 3π𝐻 2

0

+∞∑︁
𝑛=−∞

+∞∑︁
𝑚=−∞

∫
𝑆2

d2�̂� 𝑇 𝐴
𝑗 ,𝑚∂𝑗𝑇

𝐴∗
𝑖 ,𝑛

×
∫ ∞

0
d𝑓 e2πi(𝑛𝑡 ′−𝑚𝑡 ′′)/𝑃 cos[2π𝑓 (𝑡 ′ − 𝑡 ′′)] 𝑓 𝛺 ( 𝑓 ).

(3.46)

In order to derive the corresponding KM coefficients using equations (3.40) and (3.41), we see that we
must evaluate two oscillatory time integrals,∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡+𝜏

𝑡

d𝑡 ′′e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′,∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡 ′

𝑡

d𝑡 ′′e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′,

(3.47)

where we have converted the cosine in equation (3.46) into an exponential. To do so, we recall that
the timescales ≤ 𝑃 associated with the binary’s resonant frequencies are much shorter than the secular
timescales 𝑋 / ¤𝑋 we are interested in.2 Even though we will later take the limit𝜏 → 0, all we really require
to derive a FPE valid on secular timescales∼ 𝑋 / ¤𝑋 is that𝜏 ≪ 𝑋 / ¤𝑋 , and since we have𝑃 ≪ 𝑋 / ¤𝑋 , we can
consistently also demand that𝜏 ≫ 𝑃 . In this limit, the first integral in equation (3.47) is approximated
by ∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡+𝜏

𝑡

d𝑡 ′′ e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′ ≃ 𝜏𝛿𝑚𝑛𝛿 ( 𝑓 − 𝑛/𝑃 ). (3.48)

For the second integral, notice that we can write

𝜏𝛿𝑚𝑛𝛿 ( 𝑓 − 𝑛/𝑃 ) ≃
∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡+𝜏

𝑡

d𝑡 ′′ e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′

=

∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡 ′

𝑡

d𝑡 ′′ e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′

+
∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡+𝜏

𝑡 ′
d𝑡 ′′ e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′,

(3.49)

and that in the limit𝜏 ≫ 𝑃 the latter two terms are approximately equal to each other, so that∫ 𝑡+𝜏

𝑡

d𝑡 ′
∫ 𝑡 ′

𝑡

d𝑡 ′′ e−2πi( 𝑓 −𝑛/𝑃 )𝑡 ′e2πi( 𝑓 −𝑚/𝑃 )𝑡 ′′ ≃ 1
2
𝜏𝛿𝑚𝑛𝛿 ( 𝑓 − 𝑛/𝑃 ). (3.50)

2It would also be interesting to study the dynamics on sub-orbital timescales, as was done by Rozner et al. [488] and Desjacques
et al. [236] for the case of a perturbing ultralight dark matter field. We leave this for future work.
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Plugging this back in to equations (3.40), (3.41), and (3.46), we are able to write the KM coefficients
directly in terms of the GW transfer functions,

𝐷
(1)
𝑖

=𝑉𝑖 +
3π
2
𝐻 2

0

∞∑︁
𝑛=1

∫
𝑆2

d2�̂�
𝑛𝛺𝑛

𝑃
Re

(
𝑇 𝐴
𝑗 ,𝑛∂𝑗𝑇

𝐴∗
𝑖 ,𝑛

)
,

𝐷
(2)
𝑖 𝑗

=
3π
2
𝐻 2

0

∞∑︁
𝑛=1

∫
𝑆2

d2�̂�
𝑛𝛺𝑛

𝑃
Re

(
𝑇 𝐴∗
𝑖 ,𝑛𝑇

𝐴
𝑗 ,𝑛

)
,

(3.51)

where we have used𝑇𝑖 ,−𝑛 = 𝑇 ∗
𝑖 ,𝑛

, and where 𝛺𝑛 ≡ 𝛺 (𝑛/𝑃 ) is the GWB energy density at the binary’s
𝑛th harmonic frequency. (We always take only the real part when defining the KM coefficients, so for
brevity we will leave this implicit from now on.) Equation (3.51) describes the secular drift and diffusion
of the orbital elements over timescales much longer than the orbital period 𝑃 . We neglect the ⟨· · ·⟩sec

notation used in section 3.1 for brevity, but the interpretation here is exactly the same.

Note that the drift vector in equation (3.51) includes not just the expected deterministic drift𝑉𝑖 , but
also a stochastic term. As we show below, this ‘noise-induced drift’ leads to a net evolution of the mean
values of the orbital elements, and not just their variance. This is somewhat counter-intuitive, and justifies
the careful derivation presented in this section; otherwise, it would be tempting to assume that the GWB
affects only the variance of the orbital elements (as was assumed in Hui et al. [323], for example). One can
understand this drift as being the result of a ‘diffusion gradient’ due to the nonlinear coupling between
the GWB and the binary: the orbital elements change in response to the GW strain, thereby changing the
values of the transfer functions and modifying the response to the strain, with the resulting feedback loop
creating a preferred direction in parameter space for the orbital elements to evolve towards. The partial
derivative acting on the transfer function in equation (3.51) shows that this term would vanish in the
linear case (i.e., where the transfer functions are constant), and therefore that this is a purely nonlinear
effect.

We can also understand this stochastic drift as being a consequence of the GWB strain having a finite
correlation time; i.e., there is some𝜏c > 0 such that〈 ¥ℎ𝑖 𝑗 (𝑡 ) ¥ℎ𝑖 𝑗 (𝑡 + 𝜏)〉 > 0 for all |𝜏 | < 𝜏c, (3.52)

(with no implied summation over the spatial indices). Physically speaking, this is because we cannot
have arbitrarily high GW frequencies contributing to the GWB spectrum 𝛺 ( 𝑓 ), so equation (3.45)
automatically satisfies equation (3.52). However, since this correlation time is much shorter than the
secular timescales we are interested in, we can implicitly take𝜏c → 0 at the end of the calculation. This
is the Stratonovich prescription [529] for calculating stochastic integrals, which differs from the Itô
prescription [331] in which the correlation time is assumed to be zero from the start. Surprisingly, these
two prescriptions give different physical predictions when the transfer functions depend on the state
of the system, with the stochastic drift term we derived above being present only in the Stratonovich
case and not in the Itô case. This can present a problem in systems with a white-noise stochastic term,
⟨𝛤 (𝑡 )𝛤 (𝑡 ′)⟩ = 𝛿 (𝑡 − 𝑡 ′), which formally has zero correlation time, as one must determine which of the
two prescriptions is more appropriate. However, we stress that for our case here equation (3.45) shows
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3 Binary systems as dynamical gravitational-wave detectors

that there must be a nonzero correlation time, so the Stratonovich prescription is the only sensible choice.
(We could get equation (3.45) to be proportional to 𝛿 (𝑡 − 𝑡 ′) by having 𝛺 ( 𝑓 ) ∝ 1/𝑓 at arbitrarily high
frequencies, but this would cause the total GW energy density to diverge.) The stochastic drift term
appearing in equation (3.51) is therefore an unambiguous prediction for a binary coupled to the GWB.
For further discussion of the Itô and Stratonovich prescriptions and the origin of noise-induced drift see,
e.g., section 3.3.3 of Risken [484].

3.3 Calculating the Kramers-Moyal coefficients

In this section we use equation (3.51) to derive explicit expressions for the KM coefficients as functions of
the binary orbital elements and the GWB spectrum. We start with the most general expressions, before
specialising to the cases of small eccentricity and small inclination.

3.3 .1 General orbits

We present here the secular KM coefficients for general eccentricity 𝑒 ∈ (0, 1). The details of this
calculation are lengthy and unimportant for the final results, so we quote only the final expressions here,
with some further details given in appendix D. In particular, section D.1 derives the necessary projections
of the GW polarisation tensors onto the binary’s cylindrical coordinate basis; section D.2 uses these
projections to write down the transfer functions for all six orbital elements (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀) in terms of
functions of the eccentricity called Hansen coefficients, which we introduce below; section D.3 derives the
equations describing how each of the KM coefficients transforms under a change of the reference frame,
allowing us to select a particular frame which simplifies the calculations; section D.4 presents the values
of the KM coefficients in this frame in terms of the Hansen coefficients; and section D.5 writes out all of
the necessary Hansen coefficients explicitly as functions of eccentricity.

Putting all of these ingredients together, we write the full set of KM coefficients explicitly in terms of
the Hansen coefficients, which are defined as

𝐶 𝑙𝑚
𝑛 (𝑒 ) ≡

〈
exp

(
2πi𝑛𝑡
𝑃

)
cos𝑚𝜓

(1 + 𝑒 cos𝜓 )𝑙

〉
sec
,

𝑆 𝑙𝑚𝑛 (𝑒 ) ≡
〈

exp
(

2πi𝑛𝑡
𝑃

)
sin𝑚𝜓

(1 + 𝑒 cos𝜓 )𝑙

〉
sec
,

𝐸 𝑙𝑚𝑛 (𝑒 ) ≡ 𝐶 𝑙𝑚
𝑛 (𝑒 ) + 𝑆 𝑙𝑚𝑛 (𝑒 ).

(3.53)

The secular diffusion matrix𝐷 (2)
𝑖 𝑗

is thus given by

𝐷
(2)
𝑃𝑃

=
27𝑃 3𝛾 2

20

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 )

���2 − (𝑒𝑆 11
𝑛 )2

3

]
,

𝐷
(2)
𝑃𝑒

=
𝛾 2𝐷

(2)
𝑃𝑃

3𝑃𝑒
− 9𝑃 2𝛾 6

40

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛𝐸

22
𝑛

(
2
𝑒
𝐸 02
𝑛 + 𝐸 11

𝑛 − 𝐸 13
𝑛

)∗
,

𝐷
(2)
𝑒𝑒 =

3𝑃𝛾 6

20𝑒2

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 ) −𝛾 2𝐸 22

𝑛

���2 − (𝑒𝑆 11
𝑛 )2

3

]
,
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Figure 3.4: Stochastic parts of the secular period drift coefficient𝐷 (1)
𝑃

as a function of eccentricity for various
power-law GWB spectra, 𝛺 ( 𝑓 ) ∼ 𝑓 𝛼 . The top panel shows positive power-law indices, 𝛼 = 0, . . . , 2, while the
bottom panel shows negative indices, 𝛼 = 0, . . . ,−2.
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𝐷
(2)
𝐼 𝐼

=
3𝑃𝛾 6

80

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[��𝐸 20
𝑛

��2 + ��𝐸 22
𝑛

��2 + 2 cos 2𝜔𝐸 20
𝑛 (𝐸 22

𝑛 )∗
]
,

𝐷
(2)
𝐼� =

3𝑃𝛾 6

40
sin 2𝜔
sin 𝐼

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛𝐸

20
𝑛 (𝐸 22

𝑛 )∗, 𝐷
(2)
𝐼 𝜔

= −3𝑃𝛾 6

40
sin 2𝜔
tan 𝐼

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛𝐸

20
𝑛 (𝐸 22

𝑛 )∗,

𝐷
(2)
�� =

3𝑃𝛾 6

80 sin2 𝐼

∞∑︁
𝑛=1
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(3.54)

while the secular drift vector𝐷 (1)
𝑖

is given by

𝐷
(1)
𝑃

=𝑉𝑃 + 9𝑃 2𝛾 2

4

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 )

���2 − 1 + 4𝑒2

15
(𝑆 11
𝑛 )2 − 𝑒𝛾 2

15
𝑆 11
𝑛
′
𝑆 11
𝑛

+ 𝛾 2

10𝑒

(
𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 )

)
×

(
3𝐸 11

𝑛 + 𝐸 13
𝑛 + 𝑒𝐸 20

𝑛 + 4𝐸 21
𝑛 + 4𝑒𝐸 22

𝑛 − 4𝐸 23
𝑛 − 𝑒𝐸 24

𝑛 + 2𝐸 02
𝑛

′ + 𝑒 (𝐸 11
𝑛

′ − 𝐸 13
𝑛

′)
)∗

− 𝛾 4

10𝑒
𝐸 22
𝑛

(
𝐸 11
𝑛 − 𝐸 13

𝑛 + 2𝐸 02
𝑛

′ + 𝑒 (𝐸 11
𝑛

′ − 𝐸 13
𝑛

′)
)∗]

,

𝐷
(1)
𝑒 =𝑉𝑒 −

𝑃𝛾 6

20

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[
𝑆 11
𝑛
′
𝑆 11
𝑛 + 3

𝑒 3

(
𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 ) −𝛾 2𝐸 22

𝑛

)
×

(
𝐸 02
𝑛 − 𝐸 22

𝑛 − 𝑒 (𝐸 11
𝑛 + 𝐸 13

𝑛 + 2𝐸 21
𝑛 − 2𝐸 23

𝑛 + 𝐸 02
𝑛

′ −𝛾 2𝐸 22
𝑛

′)

− 𝑒2

2
(𝐸 20

𝑛 + 10𝐸 22
𝑛 − 𝐸 24

𝑛 + 𝐸 11
𝑛

′ − 𝐸 13
𝑛

′)
)∗]

,

𝐷
(1)
𝐼

=
sin 2𝐼

2
𝐷

(2)
�� , 𝐷

(1)
� = −2 cot 𝐼𝐷 (2)

𝐼� ,

𝐷
(1)
𝜔 =𝑉𝜔 + 3𝑃𝛾 6

40
sin 2𝜔

2 − sin2 𝐼

sin2 𝐼

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛𝐸

20
𝑛 (𝐸 22

𝑛 )∗, 𝐷
(1)
𝜀 =𝑉𝜀 .

(3.55)

The deterministic drift terms here are those given in section 3.1.4,
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𝑉𝑃 = −
192π𝜂𝑣5
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5𝛾 7

(
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608π𝜂𝑣5
𝑃
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304𝑒
3
)
,
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6π𝑣2

𝑃

𝑃𝛾 2 , 𝑉𝜀 =
2π𝑣2

𝑃

𝑃

(
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𝛾

)
,

(3.56)

and primes on the Hansen coefficients denote derivatives with respect to eccentricity.

The values of some of these drift and diffusion coefficients as functions of eccentricity and harmonic
frequency are shown in figures 3.4–3.10; we focus on the coefficients pertaining to the period and
eccentricity of the binary, as these are the most important for our envisaged observational applications.
These coefficients, describing the evolution of the size and shape of the orbit, are independent of the
remaining four orbital elements (𝐼 ,�, 𝜔, 𝜀), which all describe the orientation of the orbit in space. In
figures 3.4–3.8 we plot the coefficients as functions of eccentricity, assuming various power-law GWB
spectra𝛺 ( 𝑓 ) ∼ 𝑓 𝛼 ,𝛼 ∈ [−2,+2]. There are two particularly striking features that are worth mentioning:
the first is that𝐷 (2)

𝑃𝑒
and𝐷 (2)

𝑒𝑒 both vanish as 𝑒 → 1, regardless of the GWB spectrum; and the second is
that𝐷 (1)

𝑒 changes sign at an eccentricity 𝑒 ≈ 0.4 that is approximately (though not exactly) independent
of the GWB spectrum; the significance of this near-universal crossover eccentricity is not immediately
clear.

In figures 3.9 and 3.10 we plot the contributions from each of the binary’s harmonic frequencies
𝑓 = 𝑛/𝑃 . We see that the evolution of the period is driven by the 𝑛 = 2 harmonic for near-circular
binaries, with all other harmonics having zero contribution to𝐷 (2)

𝑃𝑃
and𝐷 (1)

𝑃
in the circular limit 𝑒 → 0.

This mirrors the frequency content of GW emission from binaries, which is also dominated by the 𝑛 = 2
harmonic for small eccentricity, as we saw in section 0.3.1. As we discussed there, the significance of𝑛 = 2
can be understood by recognising that advancing a circular orbit in time by 𝑃/2 (i.e. the inverse of the
𝑛 = 2 harmonic) is equivalent to exchanging the positions of the two bodies, resulting in a setup which
has the same GW emission and absorption properties. The eccentricity evolution, on the other hand, is
dominated by the 𝑛 = 1 and 𝑛 = 3 harmonics when 𝑒 is small. In all cases, the contribution from higher
harmonics becomes stronger for larger eccentricities, as the Fourier spectrum of the binary’s response
to GWs becomes richer. (Again, this is the same qualitative pattern that one finds in the case of GW
emission by the binary.) In the limit 𝑒 → 1, we see a very simple pattern emerge in which each coefficient
approaches a power law in the harmonic number 𝑛 (except for𝐷 (2)

𝑒𝑒 , which vanishes in this limit).

The qualitative link between the GW emission and absorption spectra of binaries noted above is
intriguing, and raises the question of whether this relationship can be established more formally. This
might lead to deeper insights into binary–GW interactions, for example by allowing us to prove something
akin to a fluctuation-dissipation theorem for this system. It would also be interesting to make contact
with existing results on the scattering of GWs by binaries [75]. However, on the face of it there are several
important differences between the GW absorption and emission processes: for example, the masses of
the orbiting bodies are crucial in determining the radiated GW flux, but have no influence at all on GW
absorption, since the GW-induced oscillations in the orbital separation are independent of the masses.
(This last statement is a manifestation of the equivalence principle.) We leave a more thorough exploration
of these questions for future work.
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Figure 3.6: The secular period-period diffusion coefficients𝐷 (2)
𝑃𝑃

as a function of eccentricity for various power-law
GWB spectra, 𝛺 ( 𝑓 ) ∼ 𝑓 𝛼 . The top panel shows positive power-law indices, 𝛼 = 0, . . . , 2, while the bottom
panel shows negative indices, 𝛼 = 0, . . . ,−2.
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Inserting the coefficients in equations (3.55) and (3.54) into equation (3.34), we obtain a FPE which
completely describes the secular evolution of a general binary system under GWB resonance; this is the
main result of our analysis. Sections 3.4, 3.5, and 3.6 explore various strategies for solving this equation,
and for using these solutions to place constraints on the GWB spectrum. Before moving on, we derive some
simplified expressions for the KM coefficients in the cases where the eccentricity and/or the inclination
are small.

3.3 .2 Small-eccentricity and small-inclination orbits

For binaries with very small eccentricity, we want to recast the results above in terms of the alternative orbital
elements (𝑃 , 𝜁 ,𝜅, 𝐼 ,�, 𝜉 ), as defined in equation (3.18). We do this using the coordinate transformation
laws for the KM coefficients (see, e.g., section 4.9 of Risken [484] for a derivation),

𝐷
(1)
𝑖

=
∂𝑋𝑖
∂𝑋𝑖 ′

𝐷
(1)
𝑖 ′ + ∂2𝑋𝑖

∂𝑋𝑖 ′∂𝑋 𝑗 ′
𝐷

(2)
𝑖 ′𝑗 ′ , 𝐷

(2)
𝑖 𝑗

=
∂𝑋𝑖
∂𝑋𝑖 ′

∂𝑋 𝑗

∂𝑋 𝑗 ′
𝐷

(2)
𝑖 ′𝑗 ′ , (3.57)

where summation over the primed indices is implied. Neglecting terms of order 𝑒2 ∼ 𝜁 2 ∼ 𝜁𝜅 ∼ 𝜅2, we
find the drift coefficients

𝐷
(1)
𝑃

=𝑉𝑃 + 3𝑃 2

160
𝐻 2

0 (−79𝛺1 + 288𝛺2 − 27𝛺3),
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𝐻 2

0 𝛺2 cot2 𝐼 , 𝐷
(1)
� = 0, 𝐷

(1)
𝜉

=𝑉𝜉 ,

(3.58)

where the deterministic drift terms are given by
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𝑃

𝑃
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45 𝜂𝑣
3
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and the diffusion coefficients are
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(3.60)
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Figure 3.7: Same as figure 3.6, but for the period-eccentricity diffusion coefficient𝐷 (2)
𝑃𝑒

.
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3 Binary systems as dynamical gravitational-wave detectors

(We have confirmed that the𝐷 (2)
𝑃𝑃

coefficient here matches the corresponding result in Hui et al. [323].)

We see from equation (3.58) that the stochastic drift term for the period 𝑃 is usually positive, and
can thus be interpreted physically as describing the softening of the binary due to the absorption of
energy from the GWB (the term can become negative if 𝛺2 is significantly smaller than 𝛺1 and/or 𝛺3,
but GWB spectra typically vary sufficiently slowly with frequency that this does not occur). Interestingly,
this implies that the net secular drift of the binary period (deterministic plus stochastic) generally changes
sign at some critical value of 𝑃 ; e.g., for a scale-invariant GWB 𝛺 ( 𝑓 ) = constant, this value is given by

𝑃c =

(
1024π𝜂
91𝐻 2

0 𝛺

)3/11

(2π𝐺M)5/11 ≈ 95 yr ×
(
𝛺

10−6
1/4
𝜂

)−3/11 (
𝑀

𝑚⊙

)5/11
, (3.61)

which corresponds to a semi-major axis of

𝑎c ≈ 21 au ×
(
𝛺

10−6
1/4
𝜂

)−2/11 (
𝑀

𝑚⊙

)1/3
. (3.62)

Binaries with 𝑃 < 𝑃c will decay through GW emission, decreasing their period further, whereas binaries
with𝑃 > 𝑃c undergo a net softening through GWB absorption, leading to a further increase in their period.
The point 𝑃 = 𝑃c is thus an unstable fixed point of the Langevin equation for 𝑃 .3 Note however that
random diffusion due to𝐷 (2)

𝑃𝑃
acts on a similar timescale (see figure 3.11 and equations (3.72) and (3.73)),

and can easily push the system either side of this critical point.

We find a similar phenomenon for the eccentricity. Transforming back from the Laplace-Lagrange
variables 𝜁 ,𝜅 for now, equations (3.58) and (3.60) give

𝐷
(1)
𝑒 =𝑉𝑒 +

9𝑃
80𝑒

𝐻 2
0 (3𝛺1 − 𝛺3), (3.63)

so that the (usually positive) stochastic drift diverges as 𝑒 → 0, while the (always negative) deterministic
part vanishes as 𝑒 → 0. The net eccentricity drift thus changes sign at a critical value, just as it does for
the period. For example, assuming a scale-invariant GWB spectrum, this critical value is

𝑒c =

√︄
27𝐻 2

0 𝛺

4864π𝜂𝑣5
𝑃

≈ 5.9 × 10−5 ×
(
𝛺

10−6
1/4
𝜂

)1/2 (
𝑀

𝑚⊙

)−5/6 (
𝑃

yr

)11/6
. (3.64)

Since ∂𝑒𝐷 (1)
𝑒 < 0 at this point, 𝑒c is a stable fixed point of the corresponding Langevin equation: binaries

with larger eccentricity will tend to circularise through GW emission until they reach 𝑒c, while binaries
with smaller eccentricity will on average have their eccentricity excited through GWB resonance. This is
particularly interesting from an observational point of view, as it suggests that eccentricities smaller than

3We can understand this instability through a thermodynamic analogy. In the absence of the GWB, a binary system radiates GW
energy with increasing intensity as it inspirals; its dynamical ‘temperature’ grows as it loses energy, meaning that it has a negative
heat capacity—see footnote 34 of chapter 0. Similarly, the GWB acts as a heat reservoir and imparts energy to the binary (on
average), therefore slowing the orbital motion and decreasing the system’s temperature. A conventional thermodynamic system
with positive heat capacity would equilibriate at a point where the heat loss from GW radiation balanced the heat gain from the
GWB. Instead, the binary undergoes a runaway increase or decrease in its temperature due to its negative heat capacity.
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Figure 3.8: Same as figure 3.6, but for the eccentricity-eccentricity diffusion coefficient𝐷 (2)
𝑒𝑒 .
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𝑒c might be less frequently observed in sufficiently old systems, though random diffusion due to𝐷 (2)
𝑒𝑒 can

still push systems below this point.
We also see from equation (3.58) that the stochastic drift term for the inclination changes sign at

𝐼 = π/2 (this is also true in the general-eccentricity case, see equation (3.55)). Since ∂𝐼𝐷 (1)
𝐼

< 0 at
𝐼 = π/2, this is a stable fixed point of the corresponding Langevin equation; stochastic drift will, on
average, drive binaries toward 𝐼 = π/2. This effect is counteracted, however, by binaries diffusing away
from 𝐼 = π/2. As we show explicitly in section 3.4, on extremely long timescales these two effects balance
each other, leaving an isotropic distribution for the inclination.

In the limit where the binary’s inclination is also small, we rewrite the KM coefficients in terms of the
orbital elements (𝑃 , 𝜁 ,𝜅,𝑝, 𝑞, 𝜆). This gives the drift coefficients

𝐷
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𝑝 = −𝑃𝑝

40
𝐻 2

0 𝛺2, 𝐷
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40
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0 𝛺2, (3.65)

and the diffusion coefficients,

𝐷
(2)
𝜁𝜆

= − 𝑃𝜅
320

𝐻 2
0 (203𝛺1 − 240𝛺2 + 63𝛺3), 𝐷

(2)
𝜅𝜆

=
𝑃 𝜁

320
𝐻 2

0 (203𝛺1 − 240𝛺2 + 63𝛺3),

𝐷
(2)
𝑝𝑝 = 𝐷

(2)
𝑞𝑞 =

3𝑃
80
𝐻 2

0 𝛺2, 𝐷
(2)
𝑝𝜆

=
3𝑃𝑞
160

𝐻 2
0 𝛺2 𝐷

(2)
𝑞𝜆

= −3𝑃𝑝
160

𝐻 2
0 𝛺2 𝐷

(2)
𝜆𝜆

=
3𝑃
5
𝐻 2

0 𝛺2,

𝐷
(2)
𝑃𝑝

= 𝐷
(2)
𝑃𝑞

= 𝐷
(2)
𝑃𝜆

= 𝐷
(2)
𝜁𝜅

= 𝐷
(2)
𝜁𝑝

= 𝐷
(2)
𝜁𝑞

= 𝐷
(2)
𝜅𝑝 = 𝐷

(2)
𝜅𝑞 = 𝐷

(2)
𝑝𝑞 = 0,

(3.66)

where the coefficients not listed are identical to those in equations (3.58) and (3.60). Note that this implies
𝐷

(1)
𝐼

= 3𝑃𝐻 2
0 𝛺2/(80𝐼 ), which diverges as 𝐼 → 0. This means that binaries are quickly excited away

from zero inclination, similar to what happens for the eccentricity as 𝑒 → 0.

3.4 Some exact results for circular binaries

We have shown that the osculating orbital elements of a binary coupled to the GWB evolve according to a
nonlinear six-dimensional FPE, for which no analytical solution is generally available. However, in the
small-eccentricity limit 𝑒 → 0, we found in equations (3.58) and (3.60) that the drift and diffusion of the
binary period 𝑃 are independent of all of the other orbital elements. This allows us to treat 𝑃 separately
by solving the one-dimensional FPE

∂𝑊

∂𝑡
= − ∂𝐽

∂𝑃
, (3.67)

where𝑊 (𝑃 , 𝑡 ) is now the single-variable DF for 𝑃 , marginalised over the other orbital elements, and
where

𝐽 (𝑃 , 𝑡 ) ≡ 𝐷 (1)𝑊 − ∂𝑃 (𝐷 (2)𝑊 ) (3.68)

is the probability current [280, 484]. (We have suppressed the 𝑃 subscripts on the drift and diffusion
coefficients for this single-variable case.) In this section, we derive some exact results for this simplified
equation. These results highlight the power of our Fokker-Planck formalism, which allows us to answer
these questions about the full shape of the DF in a way that previous analyses are unable to.
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Figure 3.9: Contributions to the secular diffusion coefficients𝐷 (2)
𝑃𝑃

(top panel) and𝐷 (2)
𝑒𝑒 (bottom panel) from

different harmonic frequencies, for binaries with various eccentricities 𝑒 = 0, . . . , 1. (The subscript ‘𝑛’ here
indicates that we have extracted the contribution from the 𝑛th harmonic.) We set 𝛺 ( 𝑓 ) = constant here, so
that each harmonic receives equal weighting; alternative GWB spectra will give different weighting to each
harmonic. Note that nearly all of the harmonics vanish in the circular case, 𝑒 = 0, so that the few harmonics
that do contribute appear as vertical lines. Note also that𝐷 (2)

𝑒𝑒 = 0 when 𝑒 → 1.
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3 Binary systems as dynamical gravitational-wave detectors

3.4 .1 Quasi-stationary period distribution

The simplest kind of solution to look for is a stationary (i.e., time-independent) distribution, corresponding
to constant probability current throughout the parameter space. Setting 𝐽 = constant in equation (3.68),
we can use the integrating factor (which is defined up to an arbitrary constant multiplicative factor)

𝐼 (𝑃 ) ≡ exp
(∫

d𝑃
𝐷 (1)

𝐷 (2)

)
(3.69)

to obtain
𝑊 =

𝐼 (𝑃 )
𝐷 (2)

(
𝐶 − 𝐽

∫
d𝑃
𝐼 (𝑃 )

)
, (3.70)

with 𝐶 a constant which, for a given value of 𝐽 , is fixed by the normalisation of the DF. Clearly, the
functional form of equation (3.70) depends on the GWB energy spectrum 𝛺 ( 𝑓 ). As a simple example,
consider a scale-invariant GWB, 𝛺 ( 𝑓 ) = constant, which has

𝐷 (1) =𝑉𝑃 + 273
80

𝑃 2𝐻 2
0 𝛺, 𝐷 (2) =

27
20
𝑃 3𝐻 2

0 𝛺, 𝐼 (𝑃 ) ∝ 𝑃 91/36 exp

[
91

132

(
𝑃c

𝑃

)11/3
]
. (3.71)

A full exploration of spectra beyond this simple scale-invariant case is beyond our scope here, but we
expect the qualitative results of this section to be reasonably robust to this choice.

We can fix 𝐽 and 𝐶 by imposing the appropriate boundary conditions. For some minimum value
of 𝑃 the binary merges or is tidally disrupted, whereas for some maximum value the binary becomes
gravitationally unbound, so at both extremes we require absorbing boundary conditions—i.e., the DF
must go to zero at both boundaries. Systems with absorbing boundary conditions do not admit nonzero
stationary solutions [280]; formally, the conditional probability of the binary having period 𝑃 at time
𝑡 , given that it initially had period 𝑃0 at time zero, obeys lim𝑡→∞𝑊 (𝑃 , 𝑡 |𝑃0, 0) = 0 across the entire
parameter space. Intuitively, this is because all of the initial probability mass is eventually absorbed by
one or other of the boundaries. We can also understand this in terms of the instability discussed in
section 3.3.2; binaries either side of the critical period 𝑃c undergo a runaway evolution away from this
point, reaching one of the two boundaries within finite time, thus leaving an empty distribution in the
limit 𝑡 → ∞.

In practice, however, the timescale over which the binary evolves is set by its period, and binaries with
short periods will approach stationarity much faster than binaries with long periods. More concretely, for
a flat GWB spectrum we have a drift timescale

𝜏drift ≡
𝑃

|𝐷 (1) |
≃


80

273𝑃𝐻 2
0 𝛺

, 𝑃 ≫ 𝑃c,

5𝑃 8/3

192π𝜂 (2π𝐺𝑀 )5/3 , 𝑃 ≪ 𝑃c,

(3.72)

and a diffusion timescale
𝜏diff ≡ 𝑃 2

|𝐷 (2) |
=

20
27𝑃𝐻 2

0 𝛺
. (3.73)
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Figure 3.10: Contributions to the stochastic parts of the secular drift coefficients𝐷 (1)
𝑃

(top panel) and𝐷 (1)
𝑒 (bottom

panel) from different harmonic frequencies, for binaries with various eccentricities 𝑒 = 0, . . . , 1. (The subscript
‘𝑛’ here indicates that we have extracted the contribution from the 𝑛th harmonic.) We show the absolute values,
as the drift coefficients have both positive and negative contributions. Note that𝐷 (1)

𝑒 → +∞ as 𝑒 → 0.
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Figure 3.11: Evolution timescales for the DF of a circular binary with total mass𝑀 = 𝑚⊙ immersed in a scale-
invariant GWB 𝛺 ( 𝑓 ) = constant. Solid curves show the drift timescale (3.72), which is dominated by GW
emission at ‘short’ periods 𝑃 ≲ 𝑃c and by GW absorption from the GWB at ‘long’ periods 𝑃 ≳ 𝑃c. Dashed
curves show the diffusion timescale (3.73). The dotted black curve shows 𝜏 = 𝑃 ; our secular-averaging
assumption only holds in the region above this curve.

As shown in figure 3.11, the fastest timescale is many orders of magnitude shorter near the lower boundary
than it is near the upper boundary. It may be reasonable, therefore, to look for ‘quasi-stationary’ solutions,
where equilibrium is established near the lower boundary, but where the boundary condition for long
periods is neglected. We achieve this by choosing 𝐽 and𝐶 such that the DF goes to zero at the lower
boundary, and such that the DF is normalised, but without enforcing any condition at the upper boundary.

As a simple example, consider a scale-invariant GWB spectrum 𝛺 ( 𝑓 ) = constant, and fix the DF to be
zero at the period corresponding to the binary’s innermost stable circular orbit,

𝑃ISCO ≡ 63/2 × 2π𝐺𝑀 , (3.74)

with the binary assumed to merge at periods shorter than this. The corresponding quasi-stationary
distribution is then given in terms of the dimensionless variable 𝜚 ≡ 𝑃/𝑃ISCO by

𝑊qs ∝ exp
(
𝜆

𝜚11/3

) [
𝐸77/132(𝜆𝜚−11/3)

𝜚2 −
𝐸77/132(𝜆)
𝜚17/36

]
, (3.75)

where 𝐸𝑛 (𝑧) ≡
∫ ∞

1 d𝑡 e−𝑧𝑡 𝑡 −𝑛 is the exponential integral function, and

𝜆 ≡ 91
132

(
𝑃c

𝑃ISCO

)11/3
=

√
2𝜂 (𝐺𝑀𝐻0)−2

8019
√

3π𝛺
≫ 1 (3.76)
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is a dimensionless constant which quantifies the strength of the deterministic drift𝑉𝑃 relative to the
secular diffusion𝐷 (2) . While the functional form of equation (3.75) is somewhat opaque, one can show
that it approximately interpolates between𝑊qs ∼ 𝑃 5/3 for 𝑃ISCO ≪ 𝑃 ≪ 𝑃c and𝑊qs ∼ 𝑃−17/36 for
𝑃 ≫ 𝑃c (this broken-power-law behaviour is clearly seen in figure 3.12). We normalise equation (3.75) by
integrating up to some maximum period, which we choose to be the age of the Universe. By substituting
equation (3.75) into equation (3.68) and evaluating at 𝜚 = 1 where𝑊 = 0 and ∂𝑊 /∂𝑃 > 0, we see that
the probability current is strictly negative, 𝐽 < 0. Since we specified that 𝐽 = constant, this means there is
a uniform net flow towards shorter periods throughout the parameter space, regardless of how soft the
binary is.

For hard binaries with 𝑃 < 𝑃c it is obvious that we should have 𝐽 < 0, as the negative deterministic
drift is the most important effect and quickly drives the binary toward merger. For soft binaries with
𝑃 > 𝑃c the negative probability current is less immediately obvious; it shows us that, while there is a net
drift𝐷 (1) pushing these binaries towards longer periods, on average they are nonetheless expected to flow
towards shorter periods. We can understand this somewhat counter-intuitive behaviour by including
diffusion as well as drift effects. Indeed, note that by equation (3.68), the condition 𝐽 < 0 is equivalent to

∂(ln𝐷 (2)𝑊 )
∂(ln𝑃 ) >

𝑃𝐷 (1)

𝐷 (2) =
91
36

[
1 − (𝑃/𝑃c)−11/3

]
, (3.77)

where the RHS tends to a positive constant value in the 𝑃 ≫ 𝑃c region we are interested in. What
this is telling us is that, despite the positive drift coefficient, we can still have a negative probability
current if and only if the diffusion coefficient𝐷 (2) grows sufficiently quickly with 𝑃 , as this makes it
sufficiently likely for the binary’s random walk to wander below 𝑃c and then rapidly approach short
periods through GW emission. Interestingly, we find that for the quasi-stationary distribution we have
∂(ln𝐷 (2)𝑊qs)

/
∂(ln𝑃 ) ≃ 91/36, so this diffusive effect is only just strong enough to cause a net negative

probability current.
We can repeat this process for any given GWB spectrum to write down a corresponding quasi-stationary

solution for the period of a circular binary. However, the time taken to relax to this distribution is extremely
long for typical GWB spectra (see figure 3.11), so these solutions are physically uninteresting in most cases.
Besides, the assumption of a perfectly circular binary is overly simplistic, as we have shown in section 3.3.2
that the eccentricity distribution relaxes away from zero on shorter timescales. Nonetheless, the approach
in this section is still useful for building intuitive understanding of the dynamics of the full DF, and may
be useful for, e.g., studies of the orbital element distributions of old populations of binaries, where the full
shape of the distribution is vitally important. Finding quasi-stationary solutions for the full multivariate
FPE is much more challenging, and for eccentric binaries there is no guarantee that such a solution with
the appropriate lower boundary condition even exists.

3.4 .2 Mean coalescence time

For any one-dimensional FPE, it is possible to write down an explicit formula for the mean first passage time
at either of its boundaries—i.e., the average time taken for an individual random trajectory to reach that
boundary, as a function of the initial position [280]. In our case, this is a useful tool for understanding how
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Figure 3.12: The quasi-stationary distribution (3.75) for the period 𝑃 of a binary with mass𝑀 = 𝑚⊙ coupled
to a scale-invariant GWB, 𝛺 ( 𝑓 ) = constant. The upper and lower cutoffs are due to the age of the Universe
and the binary’s ISCO period (3.74), respectively. The dashed vertical lines indicate the value of 𝑃c for each 𝛺 ,
as defined by equation (3.61)—this is roughly the peak of the distribution in each case. Binaries with periods
𝑃 < 𝑃c decay deterministically through GW emission and are removed from the distribution, whereas binaries
with 𝑃 > 𝑃c are supported against decay by resonant absorption of the GWB. As we lower the GWB intensity
𝛺 , the resonance becomes weaker, and the binaries must have longer periods to avoid decay.

the presence of a particular GWB spectrum impacts upon the eventual fate of a binary system. Applying
this to our lower absorbing boundary at the ISCO, we thus have the mean coalescence time of a binary
coupled to the GWB, as a function of its initial period 𝑃𝑖 ,

⟨𝜏 (𝑃𝑖 )⟩ =
∫ 𝑃𝑖

𝑃ISCO

d𝑃
∫ 𝑃max

𝑃

d𝑃 ′ 𝐼 (𝑃 ′)
𝐼 (𝑃 )𝐷 (2) (𝑃 ′)

, (3.78)

where 𝐼 (𝑃 ) is the integrating factor defined in equation (3.69).

Returning to the example of a scale-invariant GWB, this becomes

⟨𝜏 (𝑃𝑖 )⟩ =
∫ 𝜚𝑖

1

d𝜚
𝜚91/36

∫ 𝜚max

𝜚

d𝜚′

𝜚′17/36
20 e𝜆(𝜚′−11/3−𝜚−11/3)

27𝑃ISCO𝐻
2
0 𝛺

. (3.79)

This double integral is challenging to evaluate in general. However, we can easily verify equation (3.79)
by showing that it reproduces the standard expression for the coalescence time due to deterministic GW
emission in cases where the GWB resonance is weak. Setting𝑃𝑖 ≪ 𝑃c, we can safely take the limit𝜆 → ∞
and extract the leading-order and next-to-leading-order terms,

⟨𝜏 (𝑃𝑖 )⟩ ≃
405𝐺𝑀

16𝜂

(
𝑃𝑖

𝑃ISCO

)8/3
[
1 − 96

91
e−

91
132 (𝑃c/𝑃𝑖 )11/3 𝑃

151/36
max

𝑃
19/36
𝑖

𝑃
11/3
c

]
. (3.80)
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The leading-order term agrees with the deterministic coalescence time one finds by integrating𝑉𝑃 , as
expected. There is a small negative contribution from the next-to-leading-order term, which indicates that
GWB resonance slightly speeds up the coalescence in this regime. We can understand this by noticing that
the term associated with𝐷 (2) in equation (3.68) is always negative for the quasi-stationary distribution,
so that diffusion always has a net negative contribution to the probability current and thus, on average,
always help drive binaries towards merger.

3.4 .3 Including the remaining orbital elements

Having found a quasi-stationary period distribution, it is now relatively easy to obtain stationary distribu-
tions for the remaining orbital elements (𝐼 ,�, 𝜉 ), so long as we hold 𝜁 and𝜅 fixed at zero. To do so, we
write the full FPE as

∂𝑊

∂𝑡
= −∂𝑖 𝐽𝑖 , 𝐽𝑖 ≡ 𝐷

(1)
𝑖
𝑊 − ∂𝑗 (𝐷 (2)

𝑖 𝑗
𝑊 ), (3.81)

where𝑊 is now interpreted as the multivariate DF over the four orbital elements (𝑃 , 𝐼 ,�, 𝜉 ), and the
four corresponding probability currents are

𝐽𝑃 = 𝐷
(1)
𝑃
𝑊 − ∂𝑃 (𝐷 (2)

𝑃𝑃
𝑊 ), 𝐽𝐼 = 𝐷

(1)
𝐼
𝑊 −𝐷 (2)

𝐼 𝐼
∂𝐼𝑊 ,

𝐽� = −𝐷 (2)
��∂�𝑊 −𝐷 (2)

�𝜉
∂𝜉𝑊 , 𝐽𝜉 =𝑉𝜉𝑊 −𝐷 (2)

�𝜉
∂�𝑊 −𝐷 (2)

𝜉𝜉
∂𝜉𝑊 .

(3.82)

We have used equations (3.58) and (3.60) to simplify these expressions, in particular using the independ-
ence of the diffusion terms from most of the orbital elements to take them outside the partial derivatives.

Let us first consider the inclination 𝐼 . By definition, this is constrained to lie in the interval [0,π].
Unlike for the period 𝑃 , a binary reaching one of the boundaries of this interval is not removed from
the distribution; instead of absorbing boundary conditions, we have reflecting boundary conditions, i.e.,
the probability current 𝐽𝐼 vanishes at both boundaries. However, if the distribution is stationary then
𝐽𝐼 = constant, so the current must vanish everywhere on [0,π]. Setting 𝐽𝐼 = 0 in equation (3.82) gives

∂𝐼 ln𝑊 = 𝐷
(1)
𝐼

/𝐷 (2)
𝐼 𝐼

= cot 𝐼 . (3.83)

Integrating this we find𝑊 ∝ sin 𝐼 , which corresponds to an isotropic distribution (since cos 𝐼 is uniformly
distributed). This makes intuitive sense: on long timescales, GWB resonance causes the binary to ‘forget’
its initial orbital plane, such that the resulting stationary distribution is spherically symmetric. This also
agrees with our finding in section 3.3.2 that𝐷 (1)

𝐼
= 0 at 𝐼 = π/2, which is the mean inclination of an

isotropic distribution.
For � and 𝜉 it is natural to impose periodic boundary conditions for the DF and for the probability

currents,

𝑊 (𝑃 , 𝐼 ,�, 𝜉 , 𝑡 ) =𝑊 (𝑃 , 𝐼 ,� + 2π, 𝜉 , 𝑡 ) =𝑊 (𝑃 , 𝐼 ,�, 𝜉 + 2π, 𝑡 ),

𝐽𝑖 (𝑃 , 𝐼 ,�, 𝜉 , 𝑡 ) = 𝐽𝑖 (𝑃 , 𝐼 ,� + 2π, 𝜉 , 𝑡 ) = 𝐽𝑖 (𝑃 , 𝐼 ,�, 𝜉 + 2π, 𝑡 ).
(3.84)

Stationarity requires ∂� 𝐽� = ∂𝜉 𝐽𝜉 = 0. By inspection, we see that this is achieved if ∂�𝑊 = ∂𝜉𝑊 = 0, so
that the DF depends only on 𝑃 and 𝐼 . This corresponds to � and 𝜉 being uniformly distributed, which

185



3 Binary systems as dynamical gravitational-wave detectors

also satisfies the periodic boundary conditions; � then has zero probability current, while 𝜉 has a uniform
negative current due to the deterministic drift𝑉𝜉 , which depends only on the period.

3.5 Solving the full Fokker-Planck equation

We now consider the full FPE for all six orbital elements (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀). Allowing nonzero eccentricity
𝑒 > 0 leads to much more complicated KM coefficients, and means that the results of section 3.4 are no
longer applicable. Nonetheless, we can use the fact that diffusion of the orbital elements due to the GWB
takes place on very long timescales𝜏diff ∼ 1/(𝑃𝐻 2

0 𝛺 ) ≫ 𝑃 (see figure 3.11). This allows us to develop
some useful approximate solution schemes for much shorter observational timescales.

3.5 .1 Perturbative short-time solution

The FPE can be written as an operator equation

∂𝑊

∂𝑡
= 𝐿FP𝑊 , 𝐿FP(𝑿 ) ≡ −∂𝑖𝐷 (1)

𝑖
+ ∂𝑖∂𝑗𝐷

(2)
𝑖 𝑗
. (3.85)

This has the formal solution4 𝑊 (𝑿 , 𝑡 ) = exp(𝑡 𝐿FP)𝑊 (𝑿 , 0), which for short times 𝑡 ≪ 𝜏diff can be
expanded as

𝑊 (𝑿 , 𝑡 ) =
[
1 + 𝑡 𝐿FP(𝑿 , 0) + O(𝑡 /𝜏diff )2]𝑊 (𝑿 , 0), (3.86)

where the right-hand side depends only on data at time zero.
Suppose that at time zero the binary’s orbital elements take on the ‘sharp’ values𝑥𝑖 . The initial condition

for the DF is then𝑊 (𝑿 , 0) = 𝛿 (6) (𝑿 − 𝒙 ). By using a Fourier representation of the delta function, we
can evaluate equation (3.86) to find [484]

𝑊 (𝑿 , 𝑡 ) = 1
√

det 4π𝑡𝐷 (2)
exp

−
[
𝐷 (2) ]−1

𝑖 𝑗

4𝑡

(
𝑋𝑖 − 𝑥𝑖 −𝐷 (1)

𝑖
𝑡
) (
𝑋 𝑗 − 𝑥𝑗 −𝐷 (1)

𝑗
𝑡
) + O

(
𝑡

𝜏diff

)2
,

(3.87)
i.e., on short timescales, the DF is a multivariate Gaussian with mean 𝑥𝑖 +𝐷 (1)

𝑖
𝑡 and covariance matrix

2𝑡𝐷 (2)
𝑖 𝑗

. Here [𝐷 (2) ]−1
𝑖 𝑗

represents the elements of the inverse of the diffusion matrix, and both the drift
vector and diffusion matrix are evaluated at (𝑿 , 𝑡 ) = (𝒙 , 0).

3.5 .2 Evolution of moments of the orbital elements

The short-time expansion shows that on observational timescales the DF of the orbital elements is ap-
proximately Gaussian, and is therefore completely characterised by its first two moments: the mean and
the covariance matrix, which we write as

�̄�𝑖 ≡ ⟨𝑋𝑖 ⟩, 𝐶𝑖 𝑗 ≡ Cov[𝑋𝑖 , 𝑋 𝑗 ] =
〈(
𝑋𝑖 − �̄�𝑖

) (
𝑋 𝑗 − �̄� 𝑗

)〉
. (3.88)

4Here we take advantage of the time-independence of the secular KM coefficients. For time-dependent coefficients, one would
need to instead construct a time-ordered Dyson series [484], though this gives the same result for short times.
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3.5 Solving the full Fokker-Planck equation

It is therefore useful to take moments of the FPE to find the time evolution of these quantities, rather
than attempting to calculate the full time-dependent DF. In doing so, we can calculate the backreaction
of perturbations on the evolution of the binary, obtaining corrections to the linear growth found in
equation (3.87).

The first moment of the FPE gives

d�̄�𝑖
d𝑡

=
∂

∂𝑡

∫
d𝑿 𝑋𝑖𝑊 =

∫
d𝑿 𝑋𝑖

∂𝑊

∂𝑡
= −

∫
d𝑿 𝑋𝑖∂𝑗

(
𝐷

(1)
𝑗
𝑊

)
+

∫
d𝑿 𝑋𝑖∂𝑗∂𝑘

(
𝐷

(2)
𝑗𝑘
𝑊

)
.

(3.89)
We integrate by parts, and assume that the DF falls off fast enough that all boundary terms vanish, leaving

d�̄�𝑖
d𝑡

=

∫
d𝑿 𝐷

(1)
𝑖
𝑊 =

〈
𝐷

(1)
𝑖

〉
. (3.90)

This fall-off assumption is very reasonable here, as the diffusion rate is extremely small for realistic binaries,
so the DF will only have support very near to the mean value. Doing the same for second moment gives

d
d𝑡

〈
𝑋𝑖𝑋 𝑗

〉
=

∫
d𝑿 𝑋𝑖𝑋 𝑗

∂𝑊

∂𝑡
= −

∫
d𝑿 𝑋𝑖𝑋 𝑗∂𝑘

(
𝐷

(1)
𝑘
𝑊

)
+

∫
d𝑿 𝑋𝑖𝑋 𝑗∂𝑘∂ℓ

(
𝐷

(2)
𝑘ℓ
𝑊

)
=

∫
d𝑿

(
𝑋𝑖𝐷

(1)
𝑗

+ 𝑋 𝑗𝐷 (1)
𝑖

)
𝑊 + 2

∫
d𝑿 𝐷

(2)
𝑖 𝑗
𝑊 =

〈
𝑋𝑖𝐷

(1)
𝑗

〉
+

〈
𝑋 𝑗𝐷

(1)
𝑖

〉
+ 2

〈
𝐷

(2)
𝑖 𝑗

〉
.

(3.91)

We can combine these to give the evolution equation for the covariance matrix,

d𝐶𝑖 𝑗
d𝑡

=
d

d𝑡
(〈
𝑋𝑖𝑋 𝑗

〉
− �̄�𝑖 �̄� 𝑗

)
=

〈
𝑋𝑖𝐷

(1)
𝑗

〉
+

〈
𝑋 𝑗𝐷

(1)
𝑖

〉
+ 2

〈
𝐷

(2)
𝑖 𝑗

〉
− ⟨𝑋𝑖 ⟩

〈
𝐷

(1)
𝑗

〉
−

〈
𝑋 𝑗

〉〈
𝐷

(1)
𝑖

〉
= Cov

[
𝑋𝑖 , 𝐷

(1)
𝑗

]
+ Cov

[
𝑋 𝑗 , 𝐷

(1)
𝑖

]
+ 2

〈
𝐷

(2)
𝑖 𝑗

〉
.

(3.92)

3.5 .3 The slow-diffusion approximation

Equations (3.90) and (3.92) fully describe the evolution of the mean and covariance of the orbital elements.
However, they are given in terms of ensemble averages over nonlinear functions of the orbital elements,
which we cannot perform without knowing the full DF. Even if we were to evaluate them approximately
by assuming a Gaussian distribution, the resulting expressions would be very cumbersome.

In the case where the variance is small and any given orbital element 𝑋𝑖 is ‘close’ to its mean value ⟨𝑋𝑖 ⟩
(in a probabilistic sense), one can instead Taylor expand an arbitrary function of the elements around the
mean,

𝑓 (𝑿 ) = 𝑓 (�̄� ) +
(
𝑋𝑖 − �̄�𝑖

)
∂𝑖 𝑓 (�̄� ) + 1

2
(
𝑋𝑖 − �̄�𝑖

) (
𝑋 𝑗 − �̄� 𝑗

)
∂𝑖∂𝑗 𝑓 (�̄� ) + · · · , (3.93)

so that the mean of the function is approximated by

⟨𝑓 (𝑿 )⟩ ≃ 𝑓 (�̄� ) + 1
2
𝐶𝑖 𝑗∂𝑖∂𝑗 𝑓 (�̄� ). (3.94)
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3 Binary systems as dynamical gravitational-wave detectors

(Note that the first-order term in the expansion vanishes when taking the mean, as the first central moment
is identically zero.)

We can justify using equation (3.94) by noting that the diffusion matrix calculated in section 3.3 is
very small in most physical situations. To keep track of how this smallness propagates into the evolution
equations, we introduce a formal small parameter 𝜖 (which we will later set to unity), writing𝐷 (2)

𝑖 𝑗
→

𝜖𝐷
(2)
𝑖 𝑗

. For sharp initial conditions �̄�𝑖 = 𝑥𝑖 , 𝐶𝑖 𝑗 = 0, we see from equation(3.92) that 𝐶𝑖 𝑗 = O(𝜖),
as the Cov[𝑿 , 𝐷 (1) ] terms are initially zero. We therefore also write 𝐶𝑖 𝑗 → 𝜖𝐶𝑖 𝑗 . We thus see that
equation (3.94) is justified if we neglect terms of order 𝜖2. We call this the slow-diffusion approximation,
as it relies on the fact that the timescale 𝜏diff over which the covariance grows is long compared to the
observation time. Note that the stochastic contribution to the drift vector is generally of the same order
as the diffusion matrix, so we also write

𝐷
(1)
𝑖

=𝑉𝑖 + 𝜖δ𝐷 (1)
𝑖
, (3.95)

where the stochastic term δ𝐷 (1)
𝑖

is suppressed by a factor of 𝜖.

Applying this approximation to equations (3.90) and (3.92), we obtain the moment evolution equa-
tions to first order in 𝜖,

d�̄�𝑖
d𝑡

=𝑉𝑖 + 𝜖δ𝐷 (1)
𝑖

+ 1
2
𝜖𝐶 𝑗𝑘∂𝑗∂𝑘𝑉𝑖 + O(𝜖2),

𝜖
d𝐶𝑖 𝑗

d𝑡
= 2𝜖𝐷 (2)

𝑖 𝑗
+ 𝜖𝐶𝑖𝑘∂𝑘𝑉𝑗 + 𝜖𝐶 𝑗𝑘∂𝑘𝑉𝑖 + O(𝜖2),

(3.96)

where the drift vector and diffusion matrix are both evaluated at �̄� .

We see that the evolution equation (3.96) for the mean orbital elements includes both O
(
𝜖0) and

O
(
𝜖1) terms. For numerical reasons, it is convenient to separate these. We therefore write the mean orbital

elements as
�̄� (𝑡 ) = �̄� 0(𝑡 ) + 𝜖δ�̄� (𝑡 ), (3.97)

where �̄� 0 represents the values the elements would take in the absence of the GWB, which obey the
deterministic evolution equation

d�̄�0,𝑖

d𝑡
=𝑉𝑖 (�̄� 0). (3.98)

(Note that this separation of deterministic and stochastic parts of the drift is always possible, regardless of
the size of the deterministic term.) Meanwhile, δ�̄� represents the deviation in the mean due to GWB
resonance, and evolves according to

𝜖
dδ�̄�𝑖

d𝑡
=𝑉𝑖 (�̄� ) −𝑉𝑖 (�̄� 0) + 𝜖δ𝐷 (1)

𝑖
(�̄� ) + 1

2
𝜖𝐶 𝑗𝑘∂𝑗∂𝑘𝑉𝑖 (�̄� ) + O(𝜖2). (3.99)

We can Taylor-expand the terms that are evaluated at �̄� = �̄� 0 + 𝜖δ�̄� to give

𝜖
dδ�̄�𝑖

d𝑡
= 𝜖δ�̄� 𝑗∂𝑗𝑉𝑖 (�̄� 0) + 𝜖δ𝐷 (1)

𝑖
(�̄� 0) +

1
2
𝜖𝐶 𝑗𝑘∂𝑗∂𝑘𝑉𝑖 (�̄� 0) + O(𝜖2). (3.100)
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Figure 3.13: The covariance matrix𝐶𝑖 𝑗 (𝑡 ) of the orbital elements of the binary pulsar B1913+16 (the Hulse-Taylor
system) over a 1 kyr interval, assuming a scale-invariant GWB spectrum 𝛺 ( 𝑓 ) = 10−5, and including the first
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3 Binary systems as dynamical gravitational-wave detectors

With the appropriate terms identified, we can send 𝜖 → 1. Our full set of evolution equations, to
leading order in the slow-diffusion approximation, reads

d�̄�0,𝑖

d𝑡
=𝑉𝑖 ,

dδ�̄�𝑖
d𝑡

≃ δ𝐷 (1)
𝑖

+ δ�̄� 𝑗∂𝑗𝑉𝑖 +
1
2
𝐶 𝑗𝑘∂𝑗∂𝑘𝑉𝑖 ,

d𝐶𝑖 𝑗
d𝑡

≃ 2𝐷 (2)
𝑖 𝑗

+𝐶𝑖𝑘∂𝑘𝑉𝑗 +𝐶 𝑗𝑘∂𝑘𝑉𝑖 ,

(3.101)

with all terms evaluated at the deterministic mean elements �̄� 0. By writing the FPE in this form, we
have replaced a six-dimensional, second-order PDE with 33 coupled, one-dimensional, first-order ODEs:
six each for the deterministic mean elements �̄�0,𝑖 and the perturbations δ�̄�𝑖 , with the remaining 21
coming from the independent components of the 6 × 6 symmetric matrix𝐶𝑖 𝑗 . In figures 3.13 and 3.14
and in section 3.7 below, we explore the behaviour of these equations numerically with a purpose-built
Python code gwresonance,5 which uses a fifth-order Runge-Kutta method, as implemented in the
scipy.integrate library [569].

It is interesting to note that, starting from sharp initial conditions, some elements of the covariance
matrix remain fixed at zero under equation (3.101):

𝐶𝑃𝐼 = 𝐶𝑃� = 𝐶𝑒𝐼 = 𝐶𝑒� = 𝐶𝐼 𝜀 = 𝐶�𝜀 = 0, (3.102)

i.e., stochastic perturbations to these pairs of orbital elements remain statistically uncorrelated at first
order in the slow-diffusion approximation. This is due to the vanishing of the corresponding elements
of the diffusion matrix𝐷 (2)

𝑖 𝑗
in equation (3.54), as well as the fact that𝑉𝐼 =𝑉� = 0. However, all other

elements of the covariance matrix generically grow over time.
In figure 3.13, we show an example of an integration of the evolution equations (3.101) for the Hulse-

Taylor binary pulsar B1913+16 [324]. We see that, in this example, the period-eccentricity sector of the
covariance matrix grows linearly with time,

𝐶𝑃𝑃 ∼ 𝐶𝑃𝑒 ∼ 𝐶𝑒𝑒 ∼ 𝑡 , (3.103)

indicating that the right-hand side of equation (3.101) is dominated by the𝐷 (2) term for these components.
In contrast, many of the components involving the argument of pericentre and compensated mean
anomaly (specifically 𝐶𝑃𝜔 , 𝐶𝑃 𝜀 , 𝐶𝑒𝜔 , 𝐶𝑒 𝜀 , 𝐶𝜔𝜔 , 𝐶𝜔𝜀 , and 𝐶𝜀𝜀) have relatively smaller values for the
diffusion matrix, and are instead driven by the𝐶∂𝑉 terms, leading them to grow like ∼ 𝑡 2 (since the
components of the covariance matrix sourcing them grow like 𝐶 ∼ 𝑡 ). The components 𝐶𝐼 𝐼 , 𝐶𝐼�,
𝐶𝐼 𝜔 ,𝐶��, and𝐶�𝜔 evolve more erratically; this is due to the presence of sin 2𝜔 and cos 2𝜔 terms in the
corresponding components of the diffusion matrix (see equation (3.54)), which oscillate on a timescale
π/⟨ ¤𝜔⟩sec ≈ 43 yr due to the perihelion precession of the Hulse-Taylor system [585, 586]. Finally, the
remaining six components of the covariance matrix are zero throughout the integration time, as expected
from equation (3.102).

5https://github.com/alex-c-jenkins/gw-resonance
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Figure 3.14: Corner plot showing the distribution of the orbital elements of B1913+16 at the end of the 1 kyr
numerical integration shown in figure 3.13.

In figure 3.14 we show the distribution of the orbital elements at the end of the integration in figure 3.13.
We see that the orbital elements are, on the whole, weakly correlated with each other, with the notable
exceptions of the pairs (𝑃 , 𝜔), (𝑃 , 𝑒 ), and particularly (𝜔, 𝜀), which are highly covariant. Note that
these distributions include the overall offset due to stochastic drift, but that this is less important than
diffusion in this case, and is therefore harder to distinguish by eye.

3.5 .4 Growth rate of non-Gaussianity

By using equation (3.101) we have neglected all higher-order moments of the distribution, and thus fail to
capture any non-Gaussianities in the DF. We can measure the departure from Gaussianity by tracking the
evolution of the third central moment,

𝑆𝑖 𝑗𝑘 ≡
〈
(𝑋𝑖 − �̄�𝑖 ) (𝑋 𝑗 − �̄� 𝑗 ) (𝑋𝑘 − �̄�𝑘 )

〉
, (3.104)
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3 Binary systems as dynamical gravitational-wave detectors

as this vanishes identically for a Gaussian distribution. In particular, for each individual orbital element
𝑋𝑖 we have, to leading order in the slow-diffusion approximation,

¤𝑆𝑖 𝑖 𝑖 ≃ −3�̄�𝑖𝐶𝑖 𝑗∂𝑗𝑉𝑖 , (3.105)

(with no summation over 𝑖 ). Unlike the equations for the first two moments, the right-hand side of
equation (3.105) is initially zero—non-Gaussianity is only sourced once the covariance has had a chance
to grow. We also see that non-Gaussianity can only be sourced at leading order for orbital elements
which have a nonzero deterministic drift𝑉𝑖 ; the inclination 𝐼 and longitude of ascending node � remain
Gaussian at leading order. This justifies our assumption that the distribution is Gaussian on observational
timescales. However, studies of, e.g., the properties of old binary populations will require us to drop this
assumption and solve for the full DF. The results of section 3.4 are an important first step in studying
cases like these.

3.6 Statistical formalism for gravitational-wave
searches

In this section we describe how to estimate the sensitivity of a given binary to a generic GWB spectrum
using two different high-precision probes of binary dynamics: timing of millisecond pulsars, and laser
ranging experiments. This will allow us to compute forecasts for the upper limits that each observational
probe will be able to place on various GWB spectra. To do so, we develop a novel likelihood-ratio statistic
which accounts for the fact that not only the measured orbital elements, but also the true orbital elements,
are random variables.

3.6 .1 Distribution of the observed orbital elements

Consider a set of observations of a binary system, which are broken up into intervals much longer than
the orbital period, but much shorter than the orbital diffusion timescale. These observations give us a
discrete series of measurements of the orbital elements 𝑿 (𝑡 ), one for each interval, with the intervals being
labelled by 𝑡 . (It is necessary to split up the data into intervals, since each high-precision measurement of
the orbital elements requires a large number of individual data points.) We assume these measurements are
made with Gaussian noise and zero bias. The measured values �̂� (𝑡 ) are thus drawn from a multivariate
Gaussian distribution centred on the true values 𝑿 (𝑡 ), with log-likelihood L = ln𝑝 given by

− 2L(�̂� |𝑿 ) =
∑︁
𝑡

[
ln det 2πM + (�̂� − 𝑿 )TM−1(�̂� − 𝑿 )

]
, (3.106)

where the measurement noise is described by the covariance matrix M. The form of the covariance matrix
depends on how sensitive the timing residuals are to each orbital element—we discuss this further below.
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3.6 Statistical formalism for gravitational-wave searches

The true orbital elements𝑿 (𝑡 ) are themselves random due to the uncertainty caused by GWB resonance.
As discussed in section 3.5, we can usually approximate the distribution of the elements as Gaussian (at
least on observational timescales), so that the log-likelihood reads

− 2L(𝑿 |𝛺 ) =
∑︁
𝑡

[
ln det 2πC + (𝑿 − �̄� )TC−1(𝑿 − �̄� )

]
, (3.107)

where the mean values �̄� (𝑡 ) and covariance matrix C(𝑡 ) both depend on the GWB spectrum 𝛺 ( 𝑓 ), and
are computed as described in section 3.5.

We can marginalise over the unknown ‘true’ elements 𝑿 (𝑡 ) to obtain a likelihood function for the
measured elements �̂� (𝑡 ) for a given GWB spectrum,

− 2L(�̂� |𝛺 ) ≡ −2 ln
[∫

d𝑿 𝑝 (�̂� |𝑿 )𝑝 (𝑿 |𝛺 )
]
=

∑︁
𝑡

[
ln det 2πN + (�̂� − �̄� )TN−1(�̂� − �̄� )

]
,

(3.108)
where N ≡ M + C is the combined covariance matrix, incorporating the measurement uncertainty as well
as the stochasticity of the orbital elements.

3.6 .2 Likelihood-ratio test

Given a set of measured orbital elements �̂� , we can phrase the GWB detection problem as a hypothesis
test, where

• H0 is the null hypothesis, that there is no GWB present, 𝛺 = 0;

• H𝛺 is the alternative hypothesis, that there is a GWB present, 𝛺 ≠ 0.

The simplest version of this problem is when we are searching for a GWB with a fixed spectral shape (e.g.,
a power law), in which case the only unknown is a single parameter setting the overall amplitude, which
we denote 𝛺 . (Concretely, this parameter 𝛺 should then refer to the amplitude of the GWB at some fixed
reference frequency, c.f. equation (0.74).)

A very natural way of carrying out such a hypothesis test is by using the log-likelihood-ratio statistic

𝛬(�̂� ) ≡ 2 max
𝛺>0

[
L(�̂� |𝛺 ) − L(�̂� |0)

]
, (3.109)

i.e., we compare the likelihood (3.108) in the case of the null hypothesis 𝛺 = 0 with the maximum value
of the likelihood as a function of 𝛺 in the case of the alternative hypothesis. Since the maximum value of
the likelihood over the entire range of values of 𝛺 is always greater than or equal to its value at 𝛺 = 0, we
see that𝛬 ≥ 0.

Using equation (3.108), along with the fact that N = M when 𝛺 = 0, we find

𝛬(�̂� ) = max
𝛺>0

∑︁
𝑡

[
(�̂� − �̄� 0)TM−1(�̂� − �̄� 0) − (�̂� − �̄� )TN−1(�̂� − �̄� ) − ln det

(
I + M−1C

)]
,

(3.110)
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where �̄� 0 is the value of �̄� when 𝛺 = 0, and where we have used

det N
det M

= det M−1N = det
(
I + M−1C

)
. (3.111)

Given a set of measurements �̂� (𝑡 ), we can thus compute the likelihood ratio statistic using equation (3.110)
by solving the FPE to find �̄� (𝑡 ) and C(𝑡 ) for a large number of possible of values of𝛺 in order to maximise
the likelihood. If the resulting value of𝛬 is large enough, then we reject the null hypothesis and claim a
detection of the GWB.

An obvious question is: What value of 𝛬 is ‘large enough’? To define the detection threshold, we
need to know the distribution of 𝛬 in the case where H0 is true. Comparing the observed value of 𝛬
with this null distribution then allows us to directly infer the statistical significance of the results. Since
𝛬 is a complicated function of the data �̂� , it is difficult to find an exact distribution, even though we
have fully specified how the data are distributed. However, in the limit where we have a large number
of measurements (i.e., the data cover a large number of time intervals 𝑡 ), Wilks’ theorem tells us that𝛬
follows a chi-squared distribution [184], lim𝑛𝑡→∞ 𝛬 ∼ 𝜒2

1 , where 𝑛𝑡 is the number of time segments. (In
this case the chi-squared distribution has one degree of freedom, as H𝛺 has one more free parameter than
H0; we could imagine using a more complicated model for the GWB with 𝑘 parameters, in which case
the appropriate distribution would be 𝜒2

𝑘
.) In this limit, we can therefore set the threshold for detecting

the GWB at a given confidence level according to the corresponding𝑝 -value of 𝜒2
1 ; e.g., a detection with

95% confidence would require𝛬 ≥ 3.841.

3.6 .3 Sensitivity forecasts

We can also use the likelihood-ratio statistic discussed above to estimate the sensitivity of future observing
campaigns to different GWB spectra. To do so, we simply compute the expected value of𝛬 under the
GWB hypothesis H𝛺 , and find the smallest value of 𝛺 for which this expectation surpasses the detection
threshold—this tells us the weakest GWB that we can expect to detect with a given set of observations.

Let us use ⟨· · ·⟩𝛺 to denote an expectation value under H𝛺 . By definition, we have〈
�̂�𝑖

〉
𝛺
= �̄�𝑖 ,

〈(
�̂�𝑖 − �̄�𝑖

) (
�̂� 𝑗 − �̄� 𝑗

)〉
𝛺
= N𝑖 𝑗 , (3.112)

where the mean vector �̄� and covariance matrix C here are computed using the true underlying value
of 𝛺 . In principle, is different from the value �̂� that maximises the likelihood, and it is the latter which
determines the values for �̄� and C that appear in the statistic𝛬. However, in the 𝑛𝑡 → ∞ limit discussed
above we have �̂� → 𝛺 (in statistics parlance, the maximum-likelihood estimator is efficient [184]), so
the two are interchangeable. It is thus straightforward to show that, in this limit, the expected value of𝛬
under H𝛺 is

⟨𝛬⟩𝛺 =
∑︁
𝑡

[
δ�̄�

TM−1δ�̄� + tr M−1C − ln det
(
I + M−1C

)]
. (3.113)
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We see that the stochastic drift in the orbital elements appears quadratically here, which means that it
typically contributes less to the detectability of the GWB than diffusion, which enters linearly through
the covariance matrix.

Once we have specified the covariance matrix M for our observations, we can compute equation (3.113)
and find the smallest value of 𝛺 that we can expect to detect.

3.6 .4 Application to pulsar timing

While the formalism we have developed above is applicable to a very broad class of astrophysical binary
systems, one of the main applications is in the case where one member of the binary is a millisecond
pulsar (MSP) [397]. Analysis of the timing data from this MSP then allows us to determine its orbit with
incredible precision, with uncertainties as small as a few parts per billion in some cases. These precision
measurements allow us to search for the very small stochastic perturbations to the orbit described above.
(The same principle has been used to set novel constraints on ultralight dark matter, due to its resonant
effects on binary pulsar orbits [80, 81, 139, 140, 236, 395].) Here we follow the approach of Blandford
and Teukolsky [136] (see also Epstein [256] and Damour and Deruelle [226]) to estimate the covariance
matrix M for the orbital elements of a binary pulsar.

For each of the 𝑛𝑡 observation intervals used to construct the likelihood ratio statistic above, one must
observe some number 𝑛obs of pulse arrival times, compare these arrival times with a timing formula for
the binary, and thereby infer the binary’s orbital elements at that time from the timing residuals. In the
limit 𝑛obs → ∞, the resulting covariance matrix M describing the uncertainty in the orbital elements is
given by the inverse of the Fisher matrix,

M = F−1, F𝑖 𝑗 ≡ −
〈
∂𝑖∂𝑗L(𝒕 |𝑿 )

〉
, (3.114)

where L is the log-likelihood describing the distribution of arrival times 𝒕 = (𝑡1, 𝑡2, . . . , 𝑡𝑛obs) as a function
of the orbital elements 𝑿 , and the angle brackets here denote an expectation value under that distribution.
We make the standard assumptions that the times-of-arrival (ToAs) of the pulses form a set of uncorrelated
Gaussian random variables with constant variance 𝜎2 (i.e., the timing noise is independent of the binary’s
orbit), and with mean values given by the timing formula,

⟨𝑡𝑎⟩ ≡ T𝑎 (𝑿 ), Cov[𝑡𝑎 , 𝑡𝑏 ] ≡ 𝛿𝑎𝑏𝜎
2, (3.115)

so that the log-likelihood is given by

− 2L(𝒕 |𝑿 ) =
𝑛obs∑︁
𝑎=1

ln 2π𝜎2 + 1
𝜎2 (𝑡𝑎 − T𝑎 )2. (3.116)

The Fisher matrix for a likelihood of this form (as derived in, e.g., Tegmark et al. [538]) is

F𝑖 𝑗 ≡
1
𝜎2

𝑛obs∑︁
𝑎=1

∂T𝑎
∂𝑋𝑖

∂T𝑎
∂𝑋 𝑗

. (3.117)
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To evaluate the Fisher matrix, we therefore need the derivatives of the timing formula T with respect
to each of the orbital elements. Using the standard Blandford-Teukolsky timing formula [136], we write
these as

∂T
∂𝑃

=
𝑣𝑃 sin 𝐼

1 +𝑚1/𝑚2

𝐸 − 𝑒 sin𝐸
2π(1 − 𝑒 cos𝐸 ) (sin𝜔 sin𝐸 −𝛾 cos𝜔 cos𝐸 ),

∂T
∂𝑒

= − 𝑃

2π
𝑣𝑃 sin 𝐼

1 +𝑚1/𝑚2

[
sin𝜔 (1 + sin2 𝐸 ) + cos𝜔 sin𝐸

𝛾
(𝑒 −𝛾 2 cos𝐸 )

]
,

∂T
∂𝐼

=
𝑃

2π
𝑣𝑃 cos 𝐼

1 +𝑚1/𝑚2
[sin𝜔 (cos𝐸 − 𝑒 ) +𝛾 cos𝜔 sin𝐸 ],

∂T
∂�

= 0,

∂T
∂𝜔

=
𝑃

2π
𝑣𝑃 sin 𝐼

1 +𝑚1/𝑚2
[cos𝜔 (cos𝐸 − 𝑒 ) −𝛾 sin𝜔 sin𝐸 ],

∂T
∂𝜀

= − 𝑃

2π
𝑣𝑃 sin 𝐼

1 +𝑚1/𝑚2

sin𝜔 sin𝐸 −𝛾 cos𝜔 cos𝐸
1 − 𝑒 cos𝐸

,

(3.118)

where the eccentric anomaly 𝐸 (𝑡 ) is defined by

𝑟 = 𝑎 (1 − 𝑒 cos𝐸 ), cos𝜓 =
cos𝐸 − 𝑒

1 − 𝑒 cos𝐸
, (3.119)

and acts as an alternative to the true anomaly𝜓 as a way of parameterising the orbital ellipse. We see that
the timing formula does not depend on the longitude of ascending node, ∂T/∂� = 0, which means
that � cannot be determined with pulsar timing (physically this is because � corresponds to a rotation
around the line-of-sight axis, and thus does not affect the observable motion parallel to the line of sight).

In the limit of many ToAs, 𝑛obs → ∞, and assuming that these are distributed uniformly in time, we
can replace the sum in equation (3.117) with an integral to obtain

F𝑖 𝑗 ≃
𝑛obs

𝑇obs𝜎2

∫ 𝑇obs

0
d𝑡

∂T
∂𝑋𝑖

∂T
∂𝑋 𝑗

≃ 𝑛obs

𝑇obs𝜎2
𝑃

2π

∫ 2π𝑇obs/𝑃

0
d𝐸 (1 − 𝑒 cos𝐸 ) ∂T

∂𝑋𝑖

∂T
∂𝑋 𝑗

, (3.120)

where𝑇obs is the time interval over which the 𝑛obs pulse measurements are made, and where we have used
Kepler’s equation,

d𝐸
d𝑡

=
2π/𝑃

1 − 𝑒 cos𝐸
. (3.121)

For simplicity, we assume that𝑇obs is an integer multiple of the binary period 𝑃 , and begins when the
binary is at pericentre; if this is not the case, then the following formulae contain additional phase factors
which do not affect the order of magnitude of the results.

We find that it is convenient to define

F𝑖 𝑗 =
𝑛obs𝑃

2

16π2𝜎2

(
𝑣𝑃 sin 𝐼

1 +𝑚1/𝑚2

)2
F̃𝑖 𝑗 , (3.122)

pulling out some factors which appear in all of the Fisher matrix elements. Inserting the derivatives (3.118)
into equation (3.120), we find that this factorised form of the Fisher matrix is given by
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F̃𝑃𝑃 =
8𝑒
𝑃 2 (1 +

1
4𝑒

2) + cos 2𝜔
𝑃 2 𝑓1(𝑒 ) +

2π𝑇obs

𝑃 3 sin 2𝜔𝑓2(𝑒 ) +
8π2𝑇 2

obs
3𝑃 4

[
1 − 1

4 cos 2𝜔𝑓3(𝑒 )
]
,

F̃𝑃𝑒 =
4
𝑃

(
1 + 3

8𝑒
) (

1 − 1
6𝑒

2
)
+ π𝑇obs𝑒

𝑃 2𝛾
sin 2𝜔 − 8 cos 2𝜔

3𝑃

(
1 + 3

4𝑒 +
1
6𝑒

2 + 1
16𝑒

3
)
,

F̃𝑃𝐼 =
cot 𝐼
𝑃

[
2𝑒

(
1 + 1

4𝑒
)
+ cos 2𝜔

(
1 − 2𝑒 − 3

2𝑒
2
)]
,

F̃𝑃𝜔 = − sin 2𝜔
𝑃

(1 − 2𝑒 − 3
2𝑒

2) − 2π𝑇obs𝛾

𝑃 2 ,

F̃𝑃 𝜀 = − sin 2𝜔
𝑃

𝑓2(𝑒 ) −
2π𝑇obs

𝑃 2

[
1 − 1

4 cos 2𝜔𝑓3(𝑒 )
]
,

F̃𝑒𝑒 =
5
𝛾 2

[
1 − 3

4𝑒
2 − 1

20𝑒
4 − 9

10 cos 2𝜔
(
1 − 23

18𝑒
2 + 1

18𝑒
4
)]
,

F̃𝑒𝐼 = 3𝑒 cot 𝐼
[
1 + 1

12𝑒
2 − 11

6 cos 2𝜔
(
1 − 1

22𝑒
2
)]
,

F̃𝑒𝜔 = 11
2 𝑒 sin 2𝜔

(
1 − 1

22𝑒
2
)
, F̃𝑒 𝜀 =

𝑒

𝛾
sin 2𝜔,

F̃𝐼 𝐼 = 2 cot2 𝐼
(
1 + 3

2𝑒
2 − 5

2𝑒
2 cos 2𝜔

)
, F̃𝐼 𝜔 = 5𝑒2 cot 𝐼 sin 2𝜔, F̃𝐼 𝜀 = 0,

F̃𝜔𝜔 = 2 + 3𝑒2 + 5𝑒2 cos 2𝜔, F̃𝜔𝜀 = 2𝛾 , F̃𝜀𝜀 = 4
sin2 𝜔 +𝛾 cos2 𝜔

1 +𝛾 ,

(3.123)

where the 𝑓𝑖 (𝑒 ) are functions of eccentricity, which are given to O
(
𝑒 14) by

𝑓1(𝑒 ) ≃ 1 + 8
9𝑒 −

3
16𝑒

2 − 448
225𝑒

3 − 175
288𝑒

4 − 11584
11025𝑒

5 − 2975
9216𝑒

6 − 67264
99225𝑒

7 − 96733
460800𝑒

8

− 5818432
12006225𝑒

9 − 278579
1843200𝑒

10 − 149726912
405810405𝑒

11 − 20910823
180633600𝑒

12,

𝑓2(𝑒 ) ≃ 1 + 4
3𝑒 +

5
8𝑒

2 + 2
15𝑒

3 + 1
48𝑒

4 + 1
210𝑒

5 − 29
768𝑒

6 − 31
1260𝑒

7 − 359
7680𝑒

8

− 3559
110880𝑒

9 − 469
10240𝑒

10 − 19087
576576𝑒

11 − 6099
143360𝑒

12,

𝑓3(𝑒 ) ≃ 𝑒2 + 1
2𝑒

4 + 5
16𝑒

6 + 7
32𝑒

8 + 21
128𝑒

10 + 33
256𝑒

12.

(3.124)

We have checked numerically that these expressions are accurate to within ≈ 2% even at large eccentricity,
𝑒 = 0.95; for smaller eccentricities, the accuracy is even better.

For binaries with small eccentricity (𝑒 ≲ 10−3), we can change to the alternative orbital elements
(𝑃 , 𝜁 ,𝜅, 𝐼 ,�, 𝜉 ) to find

F̃𝑃𝑃 =
1
𝑃 2

[
− 𝜁

2 − 𝜅2

𝜁 2 + 𝜅2 + 4π𝑇obs

𝑃

𝜁𝜅

𝜁 2 + 𝜅2 +
8π2𝑇 2

obs
3𝑃 2

]
, F̃𝑃 𝜁 =

4𝜁
3𝑃

5𝜁 2 + 6𝜅2

(𝜁 2 + 𝜅2)3/2 ,

F̃𝑃𝜅 =
4𝜅
3𝑃

𝜅2

(𝜁 2 + 𝜅2)3/2 , F̃𝑃𝐼 = −cot 𝐼
𝑃

𝜁 2 − 𝜅2

𝜁 2 + 𝜅2 , F̃𝑃𝜉 = − 2
𝑃

(
𝜁𝜅

𝜁 2 + 𝜅2 + π𝑇obs

𝑃

)
,

F̃𝜁 𝜁 =
19
2
, F̃𝜁𝜅 =

3
4
𝜁𝜅, F̃𝜁 𝐼 =

1
2
𝜁 cot 𝐼

(
15 + 2𝜁 2

𝜁 2 + 𝜅2

)
, F̃𝜁 𝜉 = 2𝜅

𝜁 2 − 𝜅2

𝜁 2 + 𝜅2 ,

F̃𝜅𝜅 =
1
2
, F̃𝜅𝐼 = − 1

2
𝜅 cot 𝐼

(
5 − 2𝜁 2

𝜁 2 + 𝜅2

)
, F̃𝜅𝜉 = 𝜁

(
5
2
− 𝜁 2

𝜁 2 + 𝜅2

)
,

F̃𝐼 𝐼 = 2 cot2 𝐼 , F̃𝐼 𝜉 = 0, F̃𝜉𝜉 = 2.

(3.125)
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Assuming some values for the observation interval𝑇obs, number of ToAs 𝑛obs, and rms timing noise 𝜎 ,
we can thus use the Fisher matrix elements given above to calculate the expected likelihood ratio (3.113)
for a given GWB spectrum, and therefore compute upper limit forecasts.

3.6 .5 Application to laser ranging

Another extremely precise observational probe of binary dynamics is laser ranging (LR), in which laser
pulses are fired at retroreflectors on bodies orbiting the Earth; typically the Moon (Lunar Laser Ranging,
LLR) [431] or artificial satellites (Satellite Laser Ranging, SLR) [203]. By measuring the round-trip times
of these pulses, the size of the orbit can be tracked over time with millimetre precision.

We estimate the sensitivity of a generic LR experiment in a very similar way to our treatment of pulsar
timing above. Individual range measurements are assumed to be unbiased, with uncorrelated Gaussian
noise of variance 𝜎2. We write their mean value at time 𝑡 in terms of the eccentric anomaly (3.119),
and define the Fisher matrix in the limit of many uniformly-spaced observations analogously to equa-
tion (3.120),

F𝑖 𝑗 ≃
𝑛obs

𝑇obs𝜎2
𝑃

2π

∫ 2π𝑇obs/𝑃

0
d𝐸 (1 − 𝑒 cos𝐸 ) ∂𝑟

∂𝑋𝑖

∂𝑟

∂𝑋 𝑗
. (3.126)

The necessary partial derivatives are given by

∂𝑟

∂𝑃
=

2𝑎
3𝑃

(1 − 𝑒 cos𝐸 ) − 𝑎𝑒 sin𝐸
𝑃

𝐸 − 𝑒 sin𝐸
1 − 𝑒 cos𝐸

,
∂𝑟

∂𝑒
= 𝑎

𝑒 − cos𝐸
1 − 𝑒 cos𝐸

,
∂𝑟

∂𝜀
=

𝑎𝑒 sin𝐸
1 − 𝑒 cos𝐸

,

(3.127)
where we have used the time-integrated form of equation (3.121),

𝐸 − 𝑒 sin𝐸 =
2π𝑡
𝑃

+ 𝜀. (3.128)

Note that we have neglected the three angles describing the orientation of the orbital plane in space,
(𝐼 ,�, 𝜔), as these are not directly measured by the round-trip times of the laser pulses.

Inserting equation (3.127) into equation (3.126), we obtain the Fisher matrix,

F𝑃𝑃 ≃ 4𝑛obs𝑎
2

9𝑃 2𝜎2

[3π2𝑇 2
obs

2𝑃 2 (𝑒2 + 1
4𝑒

4) + 1 + 3𝑒 + 27
16𝑒

2 + 4𝑒 3 + 315
256𝑒

4
]
,

F𝑃𝑒 ≃
3𝑛obs𝑎

2

4𝑃𝜎2

(
𝑒 + 8

9𝑒
2 + 5

8𝑒
3 + 8

45𝑒
4
)
, F𝑃 𝜀 ≃ −π𝑛obs𝑇obs𝑎

2

2𝑃 2𝜎2

(
𝑒2 + 1

4𝑒
4
)
,

F𝑒𝑒 =
𝑛obs𝑎

2

𝜎2

(
2 −𝛾 − 1 −𝛾

𝑒2

)
, F𝜀𝜀 =

𝑛obs𝑎
2

𝜎2 (1 −𝛾 ).

(3.129)

We have neglected O
(
𝑒 6) terms for the first three entries here, since the Moon and the artificial satellites

that are typically tracked with SLR have small eccentricities (e.g., the Lunar eccentricity is 𝑒 ≈ 0.055).

3.7 Bridging the μHz gap

As we argued at the beginning of this chapter, the various gaps between the sensitive frequency bands
of current and near-future GW experiments present a serious problem for GW astronomy, as failing
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to explore these gaps could mean missing out on discovering any number of exciting signals hiding at
these frequencies. A particularly large and well-known gap in the GW landscape occurs at roughly 10−7–
10−4 Hz, between the sensitive bands of pulsar timing arrays and future space-based interferometers such
as LISA (see figure 0.14). Accessing these frequencies is challenging, requiring ‘detectors’ of astronomical
scale that are nonetheless sensitive to the subtle effects of GWs. For example, one proposal is to construct
an extremely long-baseline space-based interferometer, roughly the size of the Earth’s orbit around the
Sun (the μAres concept [506]); however, such ideas are currently very futuristic. Instead, we can take
advantage of the fact that these μHz frequencies correspond to the orbital frequencies of binaries with
periods ranging from days to years, allowing us to fill this gap with binary resonance searches. For shorter
periods on the order of hours, we can also begin to explore the LISA band in the decade before LISA flies.

In this section, we use the formalism developed in the preceding sections to explore the GWB constraints
that are possible with current and near-future observational data. Our main results are based on three
different high-precision probes of binary orbital dynamics:

MSP: Timing of binary millisecond pulsars (MSPs), with periods between 𝑃 ≈ 1.5 hr and 𝑃 ≈
5.3 yr [410];

LLR: Laser-ranging measurements of the Moon’s orbit around the Earth (𝑃 ≈ 27 days) [431];

SLR: Laser-ranging measurements of the orbits of artificial satellites around the Earth, in particular the
LAGEOS-1 satellite (𝑃 ≈ 3.8 hr) [203], as this has been regularly producing laser-ranging data for
longer than any other satellite mission.

To get a sense of how strong we can expect our forecast constraints to be, it is instructive to carry
out a back-of-the-envelope calculation in which the rms perturbation to the orbital period after time

𝑇 is 𝜎𝑃 =

√︃
2𝑇𝐷 (2)

𝑃𝑃
. Taking the LLR case as an example, for a SGWB intensity 𝛺gw = 10−5 and an

observation period of𝑇 = 15 yr, this gives 𝜎𝑃 ∼ 1 μs. This corresponds to a rms perturbation to the semi-
major axis of𝜎𝑎 = (2𝑎/3𝑃 )𝜎𝑃 ∼ 0.1 mm. Given that each LLR ‘normal point’ measurement determines
the Earth-Moon distance to within ∼ 3 mm, we see that a campaign of∼ 1000 such measurements should
be capable of detecting this signal (assuming that the total measurement uncertainty scales like the inverse
square root of the number of independent measurements).

To obtain our forecasts, we numerically evolve the evolution equations (3.101) for the first and second
moments of the orbital elements of each of these systems using our Python code gwresonance. We
start all integrations from sharp initial conditions, and include the first 400 harmonics when dynamically
computing the KM coefficients (although the evolution is almost always dominated by the first three
harmonics; c.f. figure 3.16). By integrating over the duration of a given observing campaign, and specifying
the precision with which a given experiment can measure the orbital elements (via the Fisher matrix;
either equation (3.123) for LR or equation (3.129) for MSPs), we can compute the expectation value
of the likelihood-ratio statistic (3.113), ⟨𝛬⟩𝛺 . We thus estimate the detection threshold for a given
experiment and for a given GWB power-law index 𝛼 by finding the smallest GWB amplitude such that
⟨𝛬⟩𝛺 ≥ 3.841, using a numerical root-finding procedure. We then iterate this procedure over different
power-law indices, 𝛼 = −10,−9.75,−9.5, . . . ,+10, to construct the PI curves for these searches [545],
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as defined in section 0.2.5. These curves represent the sensitivity of each binary to the GWB, under the
assumption that the GWB spectrum is reasonably well-modelled as a power law with |𝛼 | ≤ 10 in that
binary’s sensitive frequency band.

For each of our binary resonance probes (MSP, LLR, and SLR), we calculate two PI curves: one which
reflects the data currently available in 2021, and one which should be achievable by 2038, by which time
LISA is expected to have completed its nominal 4-year mission [73]. Before we present the results of these
calculations, we first discuss the details of how we model the sensitivity of each set of observations, some
of the details of which are given in table 3.1.

3.7 .1 Binary pulsars

We extract the orbital elements of 322 binary MSPs from the ATNF pulsar catalogue6 [410], discarding 106
due to incomplete information, as well as the extremely wide binary J2032+4127, whose 46 yr period [399]
means that the system has completed less than one complete orbit since its discovery in 2009 [42]. For
the remaining 215 MSPs, we extract the period 𝑃 , eccentricity 𝑒 , and argument of pericentre 𝜔 ; for
near-circular systems 𝑒 ≤ 10−3 the latter two are replaced by the Laplace-Lagrange parameters 𝜁 ,𝜅 , as
these are more numerically stable when 𝑒 is very small. The strongest GW constraints typically come
from binaries with longer periods, although the sensitivity also depends on the eccentricity and argument
of pericentre in a more complicated way.

The inclinations of binary MSPs are generally poorly-determined due to a degeneracy with the (of-
ten unknown) masses of the pulsar and its companion. For most of the 215 systems, we assume a
pulsar mass of 𝑚𝑝 = 1.35𝑚⊙ and an inclination of 𝐼 = π/3, as this corresponds to the median
value of the companion mass 𝑚𝑐 , which we extract from the catalogue. These assumptions are ne-
cessary to calculate our predictions for the orbital evolution, since the two masses set the deterministic
decay of the period and eccentricity through GW radiation; in practice one would marginalise over
the uncertainties in the masses, and propagate this uncertainty in to the model for the orbital evol-
ution. In order to refine our results, we replace these assumed values with more accurate mass and
inclination determinations from the literature for the following MSPs, which produce the best GWB
bounds from our sample: J0737−3039A [381] (the double pulsar), B1913+16 [585] (the Hulse-Taylor
system), B2127+11C [335], B1534+12 [273], J1829+2456 [298], J1439−5501 [397], B2303+46 [369],
J0045−7319 [362], J1903+0327 [276], J1740−3052 [403], and B1259−63 [426].

Using these orbital elements and masses, we integrate the moment evolution equations (3.101) from
sharp initial conditions, with the initial time set to the year in which each system was discovered. With
these details specified, the GWB sensitivity is then set by the number of ToAs per observing interval, 𝑛obs,
and the rms timing noise 𝜎 associated with each ToA. We assume each ToA corresponds to a 10-minute
pulse integration time. For our 2021 sensitivity curves, we assume each system is monitored for two weeks
every year, with ToAs being gathered for two hours every day within this period; this corresponds to the
data cadence for B1913+16 [323], and gives 168 ToAs per year. We further assume 𝜎 = 1 μs. For our 2038
sensitivity curves, we assume an observing campaign of 365 ToAs per year (i.e., 10 minutes of observations

6https://www.atnf.csiro.au/research/pulsar/psrcat/
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Table 3.1: Table of masses and orbital elements of the binary systems used to generate our results in figures 3.15–3.19.
We show a maximum of four significant digits, though in many cases these quantities have been measured with
much greater precision. For the binary pulsars,𝑚1 and𝑚2 refer to the masses of the pulsar and its companion
respectively, while for the other binaries they are chosen so that𝑚1 ≥ 𝑚2.
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3 Binary systems as dynamical gravitational-wave detectors

per pulsar per day) with 𝜎 = 80 ns, which is the forecast 10-minute ToA uncertainty of next-generation
radio telescopes like the SKA [393].

It is important to note that our 2038 bounds are based only on known pulsars. However, the SKA
and other future radio telescopes are expected to discover large numbers of new pulsars [339], some of
which may be in binaries with orbits that are particularly sensitive probes of GWB resonance. We make
no assumptions about these as-yet undiscovered pulsars, meaning that our 2038 bounds are conservative
in this sense.

3.7 .2 Laser ranging experiments

For our LLR results we use the Lunar orbital elements, Lunar mass, and Earth mass tabulated in Murray
and Dermott [432]. We base our 2021 sensitivity calculations on the APOLLO experiment, which has
been observing since 2006, collecting roughly 260 ‘normal point’ range measurements per year with a
rms uncertainty of 𝜎 ≈ 3 mm [431]. For our 2038 sensitivity curve, we assume an observation campaign
which collects 1040 normal points per year (four times the current level) with an order-of-magnitude
improvement in precision,𝜎 = 0.3 mm (this would likely require the installation of new retroreflectors on
the Lunar surface [431], as the degradation of the existing reflectors is currently the main impediment to
LLR sensitivity improvements). We emphasise that including only the APOLLO experiment represents a
conservative estimate of LLR sensitivity, as this excludes other experiments which have been collecting
LLR data since 1969 (albeit with much less precision than the APOLLO data).

For our SLR results we focus on the LAGEOS-I satellite, with a start date of 1976, and using the satellite
mass and orbital elements tabulated on the International Laser Ranging Service LAGEOS webpage.7 We
assume that 50,000 normal points are collected per year for our 2021 sensitivity curve [327], rising to
200,000 per year by 2038 (again, a factor of four increase), and assume the same normal point uncertainties
as for LLR in both cases.

We note that any futuristic GW mission in the solar system focusing on the frequency band of interest
here may face the challenge of modelling the gravity gradient noise from asteroids, as recently pointed
out by Fedderke et al. [267]. However, this is several orders of magnitude too small to affect the forecasts
we present here. Nonetheless, this is indicative of the kinds of systematic uncertainties that are likely to
impact our proposed laser-ranging GW searches. In principle, any non-GW-induced evolution in the
Moon’s orbit can be modelled as part of the deterministic drift𝑉𝑖 , but this is likely to include nuisance
terms which will need to be marginalised over, potentially reducing the sensitivity of the search. For now
we neglect these potential systematics, and leave a more detailed study of their impact on laser-ranging
GW searches for future work.

3.7 .3 Results

Our binary resonance PI curves are shown in figure 3.15, alongside the sensitivities of the current and
near-future GW experiments discussed in section 0.4. There are various other constraints at lower
frequencies not shown here, including those from CMB B-mode searches [48, 433] and CMB spectral

7https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/lag1_general.html
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Figure 3.15: Power-law integrated sensitivity curves of current and near-future GW experiments. Solid curves
indicate existing results from the LIGO/Virgo/KAGRA Collaboration (LVK) [36], pulsar timing by the
Parkes PTA [388], and indirect constraints from 𝑁eff [441], as well as expected present-day sensitivities of
binary resonance searches with binary millisecond pulsars (MSPs), Lunar laser ranging (LLR), and satellite
laser ranging (SLR), which are presented for the first time here. Dashed curves indicate our binary resonance
forecast sensitivities for 2038, along with expected bounds from Einstein Telescope (ET) [464], LISA [73], the
Square Kilometre Array (SKA) [339], and the proposed km-scale atom interferometer AION [91], as well as
improved𝑁eff constraints [441]. The grey dotted curves indicate a range of possible signals associated with the
common process (CP) detected by NANOGrav [86], while the overlaid dash-dotted curve shows the median
inferred amplitude for the NANOGrav CP when assuming a 𝛺 ∼ 𝑓 2/3 spectrum, as expected for inspiralling
supermassive binary black holes (SMBBHs). The yellow dash-dotted curves show two first-order phase transition
(FOPT) spectra at temperatures𝑇∗ = 2 GeV and 200 GeV, peaking at 𝑓 ≈ 1 μHz and ≈ 100 μHz respectively.

distortions [375], as well as potential future constraints in the frequency band we are interested in,
e.g. from astrometry [78, 228, 278, 430, 581], helioseismology [394], modulation of ‘continuous-wave’
GW signals [163], the μAres concept [506], the moon’s normal modes [301, 338], and high-cadence
PTA observations [454, 580]. However, all these constraints are either very futuristic, not applicable to
stochastic GW signals, or not strong enough to be competitive with our forecasts.

Figure 3.16 shows a couple of examples of how the shapes of these PI curves depend on the ‘comb’ of
independent constraints at each of the binary’s resonant frequencies. For low-eccentricity cases such as
the Earth-Moon system (𝑒 ≈ 0.055), the 𝑛 = 2 harmonic is by far the most sensitive, giving a PI curve
which is sharply peaked at this frequency. On the other hand, high-eccentricity systems such as the binary
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3 Binary systems as dynamical gravitational-wave detectors

pulsar J1638-4725 (𝑒 ≈ 0.955) can have sensitivity out to harmonics of order 𝑛 ∼ 100 or more, giving
much broader PI curves.

We find that laser-ranging experiments are already able to place cosmologically relevant bounds with
present data; LLR has an expected sensitivity of 𝛺 ( 𝑓 ) ≥ 6.2 × 10−6 at 𝑓 = 0.85 μHz (95% confidence
upper limit), while SLR with the LAGEOS satellite is sensitive to 𝛺 ( 𝑓 ) ≥ 2.4 × 10−6 at 𝑓 = 0.15 mHz.
These represent by far the most sensitive direct GWB searches to date in the broad frequency band between
ground-based interferometers at 𝑓 ≳ 10 Hz and PTAs at 𝑓 ∼ nHz, a full three orders of magnitude
stronger than existing constraints from the Cassini spacecraft [82] and the Earth’s normal modes [217],
and are competitive with the indirect, integrated 𝑁eff constraint we discussed in section 0.4.3 which
currently sets

∫
d(ln 𝑓 ) 𝛺 ( 𝑓 ) ≤ 2.6× 10−6 for 𝑓 ≳ 10−15 [441]. By the end of the LISA mission in 2038,

we expect these bounds to improve to 𝛺 ( 𝑓 ) ≥ 4.8 × 10−9 for LLR and 𝛺 ( 𝑓 ) ≥ 8.3 × 10−9 for SLR,
significantly better than the𝑁eff constraint, which is expected to reach

∫
d(ln 𝑓 ) 𝛺 ( 𝑓 ) ≤ 1.7 × 10−7 by

that time [441].
The frequencies 𝑓 = 0.85 μHz and 𝑓 = 0.15 mHz mentioned above correspond to the 𝑛 = 2

harmonics of the Earth-Moon and Earth-LAGEOS systems, respectively. The corresponding sensitivity
curves are strongly peaked in both cases, since the coupling to the 𝑛 = 2 harmonic is by far the strongest
for low-eccentricity orbits like that of the Moon (𝑒 ≈ 0.055) and LAGEOS (𝑒 ≈ 0.0045), as we saw in
section 3.3.2. The next most sensitive frequency in both cases is the 𝑛 = 1 harmonic, which is sensitive to
𝛺 ( 𝑓 ) ≥ 3.2×10−4 for LLR and𝛺 ( 𝑓 ) ≥ 2.2×10−2 for SLR at present, improving to𝛺 ( 𝑓 ) ≥ 2.5×10−7

and 𝛺 ( 𝑓 ) ≥ 7.5 × 10−5 respectively by 2038. (See figure 3.16 for the individual sensitivities of each
harmonic of the Earth-Moon system.)

While binary pulsars are not able to compete with the laser-ranging experiments in terms of sheer
sensitivity, they do provide useful bounds across a much wider frequency band, spanning nearly five
decades in frequency from ≈ 6 nHz up to ≈ 0.2 mHz. This is partly due to the broad range of orbital
periods of various systems, and partly to the large eccentricities of many of these binaries, which gives them
sensitivity to much higher harmonics. The overall binary pulsar sensitivity curves shown in figure 3.15 are
computed by combining the overlapping PI curves of all 215 binaries that we extract from the ATNF pulsar
catalogue [410], as illustrated in figure 3.17. The most stringent sensitivity from this combined curve is
𝛺 ( 𝑓 ) ≥ 8.2×10−4 at frequencies 𝑓 = 14–25 nHz with present data, expected to reach𝛺 ( 𝑓 ) ≥ 7.5×10−7

by 2038. These forecasts are much stronger than the upper limit set by Hui et al. [323], which relied
exclusively on data from the Hulse-Taylor system B1913+16; this makes sense in light of figure 3.17, which
shows us that this system does not produce particularly strong constraints compared to some of the other
binaries in our sample.

3.7 .4 Implications for phase transitions and NANOGrav

Figure 3.15 also shows various potential GWB signals around the μHz band probed by our proposed
binary resonance searches. The most important to mention here are the phase transition spectra that
we first discussed in section 0.3.2, partly because FOPTs are a robust prediction of many well-motivated
extensions to the Standard Model, and partly because the spectral shape of a FOPT signal highlights the
constraining power of binary resonance searches. While binary resonance probes are not competitive with
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Figure 3.16: Comparison of the continuous PI curves (cyan) and discrete frequency ‘comb’ constraints (green
points) for two binary systems at 2038 sensitivity: the Earth-Moon system in the top panel, and the binary
pulsar J1638-4725 in the bottom panel. The mismatch between the discrete harmonics and the PI curves is
partly due to the collective constraining power of the large number of harmonics at high frequencies (where
the linearly-spaced harmonics become more finely spaced on a logarithmic scale), and partly due to the range
of power-law indices considered (e.g., the APOLLO constraints degrade faster than 𝛺 ∼ 𝑓 10 for harmonics
𝑛 > 3).

GW interferometers and PTAs in searching for GWB spectra which are roughly flat over many decades in
frequency (e.g., from cosmic strings), they can prove extremely useful for spectra that are confined to a
narrow frequency band. Here we focus on the GWB signal due to sound waves in the plasma, as described
by equations (0.94)–(0.96), which is thought to be the dominant contribution for most FOPTs [169].
As we mentioned previously, one also generally expects contributions from bubble wall collisions and
from turbulent flows in the plasma. These can only enhance the spectra we have investigated, meaning
that our results here should be viewed as conservative bounds.
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Figure 3.17: GWB PI curves from 11 binary pulsar systems at 2038 sensitivity. The red dashed curve shows the
combined bound from these systems plus 204 others in the ATNF catalogue [410], and corresponds to the
red dashed curve in figure 3.15. The assorted shapes of the curves shown here depend on the binary orbital
parameters (particularly the eccentricity), and illustrate the utility of our formalism in accurately capturing the
response of each system to the GWB.

In figure 3.18 we perform a scan over the FOPT parameters (𝑇∗, 𝛼, 𝛽/𝐻∗, 𝑣𝑤 ) for transitions occurring
between𝑇∗ = 10−3 GeV and 107 GeV, identifying regions of parameter space where the corresponding
GWB signal is expected to be detected by binary resonance searches and other GW probes at 2038
sensitivity. We use equations (0.94)–(0.96), subject to the requirement that the mean bubble separation,

𝑅∗ =
(8π)1/3

𝛽
max(𝑣𝑤 , 𝑐s), (3.130)

is smaller than the Hubble scale 1/𝐻∗ (with 𝑐s = 1/
√

3 the speed of sound in the plasma). For the efficiency
parameter𝜅 which appears in equation (0.96), we use the fitting functions in the appendix of Espinosa
et al. [258], while for the sound wave lifetime we take [255]

𝜏sw = 𝑅∗ ×
(

3𝜅
4

𝛼

1 + 𝛼

)−1/2
. (3.131)

In order to compute the𝑁eff constraints, we use the integrated form of this spectrum,∫ +∞

−∞
d(ln 𝑓 ) 𝛺 ( 𝑓 ) =

343
√︁

7/3
360

𝛺 ( 𝑓∗) ≈ 1.46𝛺 ( 𝑓∗). (3.132)

(Strictly speaking this is an overestimate, as it includes frequencies 𝑓 ≲ 10−15 Hz that do not contribute
to𝑁eff ; however, this has negligible effect on the results in practice.)
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Figure 3.18: Exclusion regions of the FOPT parameter space for various GWB searches at 2038 sensitivity. Here
𝑇∗ is the temperature at which the FOPT occurs, 𝛼 is the energy density released by the FOPT in units of the
radiation density at the transition epoch, 𝛽/𝐻∗ is the inverse duration of the transition in units of the Hubble
rate at the transition epoch, and 𝑣𝑤 is the bubble wall velocity.

We use the Markov chain Monte-Carlo sampler emcee8 [274] to explore the FOPT parameter space,
using the following priors (and discarding any samples for which the mean bubble separation (3.130) is
larger than the horizon,𝑅∗𝐻∗ > 1).

• Transition temperature𝑇∗: log-uniform in [10−3, 107] GeV.

• Transition strength 𝛼: log-uniform in [10−3, 103].

• Inverse duration 𝛽/𝐻∗: log-uniform in [100, 104].

• Bubble wall velocity 𝑣𝑤 : uniform in [0.2, 1].

The resulting exclusion regions in figure 3.18 show FOPTs which can be detected at ≥ 95% confidence.
We find that LLR and SLR are able to probe significant regions of the FOPT parameter space at𝑇∗ ∼ GeV
and ∼ 100 GeV respectively. While SLR is less sensitive than LISA and will provide only complementary
information, LLR will probe a region of the parameter space that is not accessible by any other planned GW
experiment, thus providing a unique and valuable contribution to the search for phase transitions in the

8https://emcee.readthedocs.io/en/stable/
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early Universe. FOPTs are only one example of a strongly-peaked GWB spectrum, but they demonstrate
that binary resonance searches (and LLR in particular) have unique GW discovery potential.

Another potential GWB signal shown in figure 3.15 is the stochastic common process detected by
NANOGrav in their 12.5-year PTA dataset [86], which we discussed in section 0.4.2. Assuming that
the signal seen by NANOGrav is indeed due to GWs, and that its spectrum can be extrapolated into the
μHz band, we find that present-day LLR data are able to probe some of the steeper spectra allowed by
the NANOGrav data (roughly 𝛺 ∼ 𝑓 1.8), which could correspond to a strongly blue-tilted inflationary
tensor spectrum [384, 558].9 If instead we assume that the NANOGrav signal follows the 𝛺 ∼ 𝑓 2/3

scaling expected from inspiralling SMBBHs, we find that the spectrum should be detectable with 2038
LLR data. This provides further motivation for the binary resonance searches we propose, showing that
LLR can probe the nature of GW signals detected in the nHz band by NANOGrav and other PTAs.10

3.7 .5 Solar system bounds

All of the binary resonance searches discussed above rely on precision measurements of orbital elements
over observational timescales of years to decades. However, our theoretical framework can also be used to
study the GWB-induced evolution of binaries on much longer timescales, e.g. the evolution of planetary
orbits since the formation of the Solar System ∼ 4.5 Gyr ago. This amplifies the size of the effect we are
interested in, as the deviations in the orbital elements typically grow like the square root of the elapsed
time. However, this also entails a loss of precision, as the initial values of the orbital elements are unknown.

In figure 3.19 we show GWB constraints from the observed orbital elements of the eight Solar System
planets, along with the dwarf planet Pluto and 110 classical Kuiper Belt Objects (KBOs). We find that
these are all orders of magnitude weaker than the precision binary resonance constraints possible with
binary pulsars and laser ranging, with the strongest limit of 𝛺 ≤ 6.6 × 103 at 𝑓 = 0.13 nHz coming from
523678 (2013 XB26), a classical KBO on a very low-eccentricity orbit [353].

To produce these constraints, we integrate the evolution equations (3.101) over the age of the solar
system (∼ 4.5 Gyr), and compare the present-day periods, eccentricities, and inclinations of various solar
system bodies to the rms changes in each of these predicted due to binary resonance,

𝜎𝑖 =

√︃
δ�̄� 2

𝑖
+𝐶𝑖 𝑖 , (3.133)

(no summation over the repeated index). Since the GWB tends to drive binaries towards longer periods,
higher eccentricities, and larger inclinations, we can infer an upper limit on the GWB intensity by requiring
equation (3.133) to be less than the present-day values of each of these quantities. In doing so, we account
for the redshifting of GWs over cosmological timescales, setting

𝛺 = 𝛺0 × (1 + 𝑧)4, 𝑓 = 𝑓0 × (1 + 𝑧), (3.134)

9Such spectra can avoid the existing LVK and𝑁eff constraints if one allows for a nonstandard thermal history [384].
10It is also possible for the spectrum to drop off before reaching μHz frequencies, so that one cannot naively extrapolate the

spectrum from NANOGrav frequencies as we have here; however, in this scenario a non-detection of the GWB with LLR
would reveal this drop-off, and would thus still provide valuable observational information.

208



3.8 Summary and outlook

10−10 10−9 10−8 10−7 10−6

f/Hz

102

104

106

108

1010

1012

Ω
gw

(f
)

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

KBOs

Figure 3.19: GWB PI curves inferred from the present-day orbital elements of various Solar System bodies. The
faint cyan curves show constraints from 110 individual KBOs from the NASA/JPL Small-Body Database, while
the solid cyan curve shows the combined KBO constraint.

with ‘0’ subscripts denoting the present-day values that we place bounds on. Since the solar system formed
at redshift 𝑧 ≈ 0.41, this can affect the final bounds by roughly a factor of (1 + 𝑧)4 ≈ 3.9. The redshifting
of the GW frequency also broadens the shape of the resulting PI curve.

We extract the present-day orbital elements and masses of the eight planets and Pluto from Murray and
Dermott [432], as well as those of 110 dynamically cold ‘classical’ KBOs from the NASA/JPL Small-Body
Database [353].11 The individual PI curves of the KBOs are combined to give an overall PI curve for the
Kuiper Belt constraint, which is dominated by 523678 (2013 XB26) at low frequencies, and by 79360
Sila-Nunam (1997 CS29) at high frequencies, primarily due to their low eccentricities 𝑒 ≈ 0.007.

3.8 Summary and outlook

In this chapter we have developed a powerful new formalism for calculating the statistical evolution of
binary systems coupled to the GWB, deriving a secular FPE which captures the full probability distribution
of all six orbital elements on timescales much longer than the binary period. The KM coefficients describing
this FPE, given in equations (3.55) and (3.54), and illustrated in figures 3.4–3.10, encapsulate the rich
dynamical structure that arises from the interactions between tensorial GW perturbations and elliptical
orbits.

The full FPE is a six-dimensional nonlinear PDE, and it is therefore challenging to find exact solutions.
Nonetheless, we have extracted some qualitative features of the late-time behaviour in section 3.4 by fixing
the eccentricity to zero. This analysis illustrates one of the key advantages of our formalism over previous
approaches: its ability to capture the full shape of the DF. We find that, while the stochastic drift effect

11https://ssd.jpl.nasa.gov/sbdb.cgi
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due to the SGWB tends to increase the energy of the binary and counteract its orbital decay through
GW emission, diffusion tends to have the opposite effect, so that the net influence of SGWB resonance is
to drive the binary towards merger. At the same time, the GWB perturbations act to erase any memory
of the binary’s initial configuration in space, driving the orbit towards an isotropic distribution in the
inclination 𝐼 , and uniform distributions in the other angular variables. We also find, however, that there
is a strong drive towards larger eccentricities in the 𝑒 → 0 limit, so these results with 𝑒 = 0 must be taken
with a pinch of salt.

We have also developed, in section 3.5, a practical approach for numerically integrating the full FPE
with general eccentricity 𝑒 ∈ (0, 1) on observational timescales, taking advantage of the fact that these are
typically much shorter than the diffusion timescale. The resulting set of equations (3.101) are illustrated in
figures 3.13 and 3.14, using the binary pulsar B1913+16 as an example. Combined with the statistical tools
developed in section 3.6, this allows us to calculate GWB sensitivity curves for probes of binary dynamics
such as pulsar timing and Lunar/satellite laser ranging. We have presented these results in section 3.7,
showing that our methods can improve upon existing bounds in the μHz frequency band by several
orders of magnitude, thereby constraining unique regions of the FOPT parameter space, and possibly
shedding light on the nature of the NANOGrav common process signal.

These results motivate further work to develop binary resonance into a precision tool for GW astronomy.
The most important task will be to develop the necessary data analysis pipelines to conduct GW searches
with pulsar-timing and laser-ranging data, in a way that fully utilises the theoretical developments in this
work. However, there also many possible avenues for developing our theoretical formalism further. One
important problem is to develop practical numerical integration schemes that go beyond the approach in
section 3.5 and capture non-Gaussian features in the DF, thereby taking full advantage of the Fokker-
Planck approach (this will be particularly important for studies of populations of binaries [99, 322]). It
would also be interesting to relax some of our assumptions, for example abandoning the secular-averaging
approach and attempting to capture the evolution of binaries within a single orbital period, or perhaps
relaxing some of the usual assumptions about the GW strain statistics to develop searches for GWBs that
are non-Gaussian, anisotropic, or have nonstandard polarisation content. One could also explore the
sensitivity of binaries to narrowband sources, using a similar approach to Blas et al. [139] to consider GW
frequencies between the binary’s resonant frequencies. There is also no reason to restrict ourselves to just
binaries; in future work, we plan to consider the GWB-driven evolution of other gravitationally-bound
systems such as hierarchical triples or many-body systems such as galaxies and globular clusters. Finally,
our work could be extended even further by considering other stochastic perturbing fields which may
exist in the Universe, such as ultralight scalars [185, 243, 275, 357].
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4 Conclusion

‘I may not have gone where I intended to go,
but I think I have ended up where I needed to be.’

Douglas Adams

The goal of this thesis has been to investigate some of the many ways in which gravitational-wave
observations can give us fascinating new insights into the fundamental laws that govern the Universe;
from the statistical distribution of matter on the largest scales, down to the particles and interactions
that make up the fabric of the cosmos. In particular, we have focused on three exciting frontiers for GW
cosmology: (𝑖 ) probing late-time cosmology using anisotropies in the astrophysical GW background, (𝑖 𝑖 )
exploring the intersection between nonlinear gravity and particle physics beyond the Standard Model with
cosmic strings, and (𝑖 𝑖 𝑖 ) searching for first-order phase transitions and other cosmological GW signals
with binary resonance.

We began in chapter 1 by motivating the importance of treating the AGWB as anisotropic, bringing
it into line with other cosmological observables such as the CMB, and thereby giving us access to novel
information that cannot be extracted from the isotropic component alone. The underlying hope here is
that, since the compact binaries that make up the AGWB signal are formed from stellar evolution, they
can act as tracers of the distribution of galaxies and matter on large scales, possibly revealing cosmological
information complementary to that provided by existing observational probes. With this aim in mind,
we have developed a model for the angular power spectrum of the AGWB, combining well-motivated
astrophysical recipes for computing the CBC rate density with a large and detailed mock galaxy catalogue
based on the Millennium𝑁 -body simulation. We find that the AGWB has strong angular fluctuations,
ranging from a few percent on the largest angular scales up to nearly 100% at higher multipoles ℓ ∼ 100.
While these anisotropies are well below the sensitivity of present GW searches, we have shown that they
are likely to be detected by next-generation experiments such as Einstein Telescope and Cosmic Explorer,
providing a direct measurement of the statistical clustering of GW sources. Unfortunately, the information
that we will be able to extract from such a detection is likely to be limited by the presence of shot noise,
which we have shown is a natural consequence of the AGWB consisting of a finite number of transient
signals. Though we have developed an optimal data-analysis method for inferring the true angular power
spectrum in the presence of shot noise, the uncertainty associated with these analyses is still much larger
than the cosmic variance limit, making it difficult to extract precise cosmological information from the
signal.

There are, however, several exciting roads ahead for anisotropic AGWB searches. One approach—
which we have already highlighted in section 1.4—is to cross-correlate the AGWB with other cosmological
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probes, which has the dual advantage of boosting the detectability of the signal and reducing the amplitude
of the shot noise. While there have been several preliminary studies into such cross-correlation searches,
there is still plenty of work to be done, both in modelling the expected signal and its dependence on various
astrophysical and cosmological factors, and implementing efficient statistical methods for inferring the
cross-correlation spectrum from GW strain data. This future work may include going beyond two-point
statistics such as the angular power spectrum, and trying to capture the full non-Gaussian statistics of the
AGWB, perhaps by computing the bispectrum and trispectrum. Another exciting possibility is to search
for the kinematic dipole in the AGWB (and, indeed, in other stochastic backgrounds). As we showed in
section 1.1.5, this dipole encodes information about the frequency spectra of the sources contributing to
the background, so that, if measured, it could prove extremely useful in discriminating between different
possible sources of a given GWB signal.

In chapter 2, we investigated the GW emission from Nambu-Goto cosmic strings, an extremely prom-
ising and well-motivated prediction of many models of particle physics beyond the Standard Model. In
particular, we calculated the nonlinear GW memory associated with cusps and kinks on Nambu-Goto
loops, i.e., the hereditary GW signal sourced by the energy-momentum of the initial cusp and kink GW
emission. If observed, this nonlinear memory would provide a fascinating test of the fundamental field-
theoretic properties of general relativity, as well as probing the nonlinear gravitational dynamics of the
cosmic strings themselves. We have obtained simple analytical waveforms for the nonlinear memory emit-
ted by cusps and kinks, including the ‘memory of the memory’ and other higher-order effects. Surprisingly,
while the memory from kinks is strongly suppressed, the memory from cusps diverges for sufficiently large
loop sizes. This divergence is unphysical, and, we have argued, indicates a breakdown in the weak-field
treatment of Nambu-Goto loop dynamics that is ubiquitous in the literature, requiring some kind of
strong-gravity mechanism to reduce the high-frequency GW emission from the cusp and thereby resolve
the divergence.

In section 2.5, we have argued that one possible tentative resolution to the cusp divergence would
be for the offending cusps to collapse and form primordial black holes. The formation of an event
horizon truncates the cusp’s GW spectrum before the signal reaches its peak, which, as we have explicitly
demonstrated, suppresses the cusp’s memory emission and cures the divergence. Using heuristic arguments
based on the hoop conjecture, we show that such a situation arises very naturally for the exact same range
of loop lengths that give rise to the memory divergence. If these cusp-collapse PBHs do indeed form, we
show that they are likely to be born with very small masses, large (but non-extremal) spins, and relativistic
velocities, making them very distinct from all other known populations of BHs (both astrophysical and
primordial). Thus, while the nonlinear memory is not itself observable in the cusp-collapse scenario, the
PBHs formed this way could act as a ‘smoking gun’ signature of cosmic strings.

The most pressing next steps associated with this work are clearly to ascertain whether or not cusp
collapse is the correct picture for resolving the nonlinear memory divergence, and if not, whether the
nonlinear memory could in fact leave a substantial observational imprint on GW observations or not.
This will likely require numerical relativity simulations, as the relativistic velocities and lack of isometries
associated with cusps makes detailed analytical treatments very challenging without resorting to the
weak-field approximation. Another interesting avenue to pursue would be to calculate the linear GW
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memory associated with matter radiation from cusps, though this would require going beyond the simple
Nambu-Goto approximation we have adopted here.

In chapter 3, the final of our three forays into GW cosmology, we have developed an exciting new GW
search method based on monitoring the orbits of binary systems. The key principle is that impinging
GWs with frequency equal to an integer multiple of the binary’s orbital frequency interact resonantly
with the system, leaving a lasting imprint on the size, shape, and orientation of the orbit. Stochastic GW
backgrounds are ideal targets for these searches, as they are persistent, thus giving rise to perturbations
in the orbital elements that grow over time, and broadband, meaning that they are much more likely to
overlap with a given binary’s resonant frequencies than a narrowband signal. However, due to the phase
incoherence of the GWB, we are unable to deterministically model the corresponding evolution of the
orbital elements over time. We therefore develop, from first principles, a Fokker-Planck equation that
tracks the time-dependent probability distribution of each of the orbital elements.

In section 3.7, we have applied these theoretical tools to forecast the sensitivity of various observational
probes of binary dynamics to the GWB, focusing on the timing of binary millisecond pulsars and laser
ranging of the Moon and artificial satellites. We have shown that these searches can reach impressive
sensitivity levels in the ‘μHz gap’ between the sensitivities of LISA and pulsar timing arrays, down to the
level of 𝛺 ∼ 10−8 by the end of LISA’s nominal 4-year mission in the late 2030s. This level of sensitivity
would allow us to search for a range of exciting GW signals in this thus-far-unexplored frequency range;
for example, ruling out a unique region of the parameter space for first-order phase transitions that cannot
be reached by other planned GW experiments, as well as shedding some light on the potential GWB signal
seen by NANOGrav in their 12.5-year dataset.

There are numerous exciting research directions that these binary resonance searches could take us
in. Perhaps the most important is to develop full data analysis pipelines for analysing pulsar-timing and
laser-ranging data, allowing us to set upper limits on (or make detections of!) the GWB spectrum. It
would also be very interesting to extend our formalism to study how other gravitationally-bound systems,
such as galaxies or stellar triples, are perturbed by the GWB.

Clearly, each of the three core topics in this thesis is ripe for further theoretical and observational
development as we step further into the era of GW astronomy. As existing detectors are upgraded, and
next-generation instruments begin to come online, we can look forward to an ever-growing number of
detected GW signals, and perhaps, eventually, the first signs of exotic new physics. While it is not yet
clear exactly what this fast-approaching treasure trove of GW data will teach us about cosmology and
fundamental physics, we can be confident that there are exciting discoveries in store, just as there have
been every time humans have used a new tool for looking at the night sky.
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A Directional GWB sensitivity
forecast for the Einstein
Telescope

In section 1.2.2 (and, in particular, figure 1.7), we showed that the lowest multipoles of the AGWB angular
power spectrum are likely to be detected by the Einstein Telescope, a third-generation ground-based GW
interferometer. This statement depends purely on the detector geometry and expected noise spectrum
of the ET proposal, and is relatively straightforward to derive. However, since, to my knowledge, this
calculation has not been presented explicitly anywhere in the literature, I include it here for completeness.
We focus purely on the directional GWB searches that are possible by cross-correlating data between each
of ET’s three interferometers (ignoring for now the potential issue of correlated noise sources), and use
the formalism of Thrane et al. [543] to derive the corresponding Fisher matrix for the𝐶ℓ ’s. In practice,
ET will likely be joined by other third-generation observatories such as Cosmic Explorer [295, 472], and
it should therefore be possible to increase the sensitivity further (both in terms of amplitude and in terms
of the number of accessible multipoles) by conducting cross-correlation searches between these different
detectors. However, the resulting sensitivity then depends on the relative locations and orientations of
the detectors, which are not yet known, so we focus for now on searches using only ET data.

The directional overlap reduction function between two Michelson interferometers operating in the
small-antenna limit 𝑓 ≪ 1/𝐿 (where 𝐿 is the arm length) is given by [487]

𝛾𝐼 𝐽 ( 𝑓 , 𝒓 ) =
1
2
D𝐴
𝐼 (𝒓 )D

𝐴
𝐽 (𝒓 ) cos[2π𝑓 𝒓 · Δ𝒙 ], (A.1)

which is just the integrand of the isotropic ORF (0.73) we encountered in section 0.2.5, 𝛤𝐼 𝐽 ( 𝑓 ) =∫
𝑆2 d2𝒓 /(4π)𝛾𝐼 𝐽 ( 𝑓 , 𝒓 ). The detector response functions D𝐴

𝐼
encode the coupling of interferometer 𝐼

to a plane wave with polarisation 𝐴 arriving from the direction 𝒓 . These are given in terms of the unit
vectors �̂� 𝐼 and 𝒗 𝐼 that point along each of the arms,

D𝐴
𝐼 =

1
2
𝑒𝐴𝑖 𝑗 (�̂�

𝑖
𝐼 �̂�

𝑗

𝐼
− 𝑣 𝑖𝐼𝑣

𝑗

𝐼
), (A.2)

where 𝑒𝐴
𝑖 𝑗

are the polarisation tensors (0.19), which are given in terms of the standard spherical polar unit
vectors 𝜽 , �̂� ,

𝑒+𝑖 𝑗 = 𝜃𝑖 𝜃 𝑗 − �̂�𝑖 �̂� 𝑗 , 𝑒×𝑖 𝑗 = 2𝜃 (𝑖 �̂� 𝑗 ) . (A.3)
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Table A.1: Non-zero spherical harmonic components for each of the three ORFs.

For ET, we have three co-located (i.e. Δ𝒙 = 0) interferometers, each having two arms which make up two
sides of an equilateral triangle [464]. We can therefore write

D𝐴
1 =

1
2
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and define a Cartesian coordinate frame in which the arm vectors are given by

�̂� 1 = (1, 0, 0), �̂�2 = − 1
2
(1,

√
3, 0), �̂�3 = − 1

2
(1,−

√
3, 0), (A.5)

In the same Cartesian basis, we have

𝜽 = (cos 𝜃 cos𝜙, cos 𝜃 sin𝜙,− sin 𝜃 ), �̂� = (− sin𝜙, cos𝜙, 0). (A.6)

The three overlap reduction functions are therefore
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32
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(A.7)

Note that the fact that the detectors are co-located makes the ORFs frequency-independent (up until
the point where the small-antenna approximation breaks down, 𝑓 ≈ 1/𝐿 ≈ 1/(10 km) ≈ 30 kHz).
We are interested in ET’s response to different spherical harmonics of the GWB, so we decompose
equation (A.7) into spherical harmonic components, [𝛾𝐼 𝐽 ]ℓ𝑚 ≡

∫
𝑆2 d2�̂� 𝑌ℓ𝑚 (�̂�)𝛾𝐼 𝐽 (�̂�). The resulting

nonzero components are shown in table A.1. We see that each ET pair is only sensitive to four independent
spherical harmonic components of the GWB: those corresponding to (ℓ,𝑚) values of (0, 0), (2, 0),
(4, 0), and (4,±4).
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ℓ = 0 ℓ = 2 ℓ = 4

UL95% 2.625 × 10−25 2.143 × 10−26 2.917 × 10−24

Table A.2: Resulting 95% confidence upper limits on the𝐶ℓ ’s from ET alone.

Given these ORF spherical harmonic components, we can calculate the Fisher matrix [487, 543] for a
power-law AGWB 𝛺 ∼ 𝑓 2/3,

𝛤ℓ𝑚,ℓ′𝑚′ =

(
3𝐻 2

0

2π2 𝑓 3
ref

)2 ∑︁
𝐼>𝐽

∑︁
𝑡 ,𝑓

[𝛾 ∗
𝐼 𝐽 ]ℓ𝑚 ( 𝑓 , 𝑡 ) [𝛾𝐼 𝐽 ]ℓ′𝑚′ ( 𝑓 , 𝑡 ) ( 𝑓 /𝑓ref )−14/3

𝑃𝐼 ( 𝑓 , 𝑡 )𝑃𝐽 ( 𝑓 , 𝑡 )
, (A.8)

where 𝑓ref is the reference frequency at which the angular power spectrum is estimated, 𝑃𝐼 is the noise
PSD in interferometer 𝐼 , the first sum is over detector pairs, and the second sum is over frequency bins
and time intervals. For concreteness, we take the time intervals as having length𝜏 = 100 s, so that we have
a frequency resolution of 1/𝜏 = 0.01 Hz; this means that the frequency-bin sum is over 𝑓𝑛 = 𝑛/𝜏 , with
𝑛 ∈ Z+. As we have seen above, the ORFs are time- and frequency-independent. We further assume that
the noise PSDs are time-independent (i.e., stationary). The Fisher matrix then simplifies to

𝛤ℓ𝑚,ℓ′𝑚′ =
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3𝐻 2
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)2
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(𝑛/𝜏 𝑓ref )−14/3

𝑃𝐼 (𝑛/𝜏)𝑃𝐽 (𝑛/𝜏)
. (A.9)

Using the design ET-D noise PSD curve [313] with a reference frequency 𝑓ref = 25 Hz, this becomes

𝛤ℓ𝑚,ℓ′𝑚′ =

(
2.509 × 1025 × 𝑇

1 year

) ∑︁
𝐼 𝐽

[𝛾 ∗
𝐼 𝐽 ]ℓ𝑚 [𝛾𝐼 𝐽 ]ℓ′𝑚′. (A.10)

The resulting uncertainty on the angular power spectrum is given in terms of the inverse Fisher matrix
𝛤 −1 by [543]

Var[𝐶ℓ] =
2

(2ℓ + 1)2

∑︁
𝑚,𝑚′

��(𝛤 −1)ℓ𝑚,ℓ𝑚′
��2, (A.11)

with the corresponding 95% confidence upper limits (assuming a half-Gaussian distribution, with no
support below zero),

UL95% = erf−1(0.95)
√︁

2Var[𝐶ℓ] ≈ 1.960
√︁

Var[𝐶ℓ]. (A.12)

In practice, the Fisher matrix is singular due to ‘blind-spots’ in the detector response, and cannot
be inverted. We instead use the Moore-Penrose pseudoinverse, which effectively ignores the spherical
harmonics that cannot be measured, and provides the unique minimum-chi-squared solution to the
deconvolution problem. The resulting upper limits are shown in table A.2 and in figure 1.7.
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B Compound Poisson shot noise
model

In section 1.3.2 we introduced the compound Poisson random variable𝛬 ≡ ∑𝑁
𝑖=1 𝜆𝑖 as a model of the

CBC event count in a given spatial volume element δ𝑉 , where the number of galaxies𝑁 ∼ Pois[�̄�δ𝑉 ]
and the number of CBCs in each galaxy 𝜆𝑖 ∼ Pois[𝑅𝜏s] are both Poisson random variables.1 (We recall
that �̄� is the mean galaxy number density,𝑅 is the CBC event rate per galaxy, and𝜏s = 𝜏/(1 + 𝑧) is the
source-frame time interval corresponding to an observation time𝜏 .) In this appendix we derive a few of
the relevant statistical properties of this model. We focus initially on a single point in the galaxy/CBC
parameter space, 𝜻 , so that the event rates per galaxy are all i.i.d.

B.1 Cumulants of the distribution

We can characterise the distribution of𝛬 by its cumulants,

𝜅𝑛 ≡ d𝑛𝐾𝛬(𝑥)
d𝑥𝑛

����
𝑥=0

, (B.1)

where 𝐾𝛬(𝑥) is the cumulant-generating function (CGF),

𝐾𝛬(𝑥) ≡ ln
〈

e𝛬𝑥
〉
. (B.2)

The first two cumulants,𝜅1, 𝜅2, are just the mean and the variance, while higher cumulants𝜅𝑛 represent
the ‘connected components’ of the 𝑛th moments of the distribution, and vanish if the distribution is
Gaussian. We can always write each of the moments ⟨𝛬𝑛⟩ as a polynomial in the cumulants; for example,
the fourth moment is

⟨𝛬4⟩ = 𝜅4
1 + 6𝜅2𝜅

2
1 + 3𝜅2

2 + 4𝜅3𝜅1 + 𝜅4. (B.3)

We can find the full set of cumulants for 𝛬 by evaluating the CGF (B.2) explicitly. As a warm-up
exercise before we do this, we start by finding the CGF for each of the per-galaxy CBC event counts,
𝜆 ∼ Pois[�̄�],

𝐾𝜆 (𝑥) ≡ ln
〈

e𝜆𝑥
〉
= ln

[ ∞∑︁
𝑘=0

Pr(𝜆 = 𝑘 )e𝑘𝑥
]
= ln

[ ∞∑︁
𝑘=0

�̄�𝑘 e−�̄�

𝑘 !
e𝑘𝑥

]
= ln e�̄�(e𝑥−1) = �̄�(e𝑥 − 1). (B.4)

1A more sophisticated approach would account for the statistical properties of haloes [213]. However, this simple assumption is
sufficient for the calculation here.
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(Similarly, 𝐾𝑁 (𝑥) = �̄� (e𝑥 − 1), as𝑁 is also Poisson-distributed.) Note that this has the property that
all of the cumulants are equal,𝜅1 = 𝜅2 = · · · = �̄� (in a sense, this is the defining feature of the Poisson
distribution). The CGF for the full compound distribution is then given by a very similar calculation,

𝐾𝛬(𝑥) = ln

[ ∞∑︁
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〈
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e𝜆𝑥
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𝑘 !
e𝑘𝐾𝜆 (𝑥)

]
= ln e�̄� (e𝐾𝜆 (𝑥 )−1) = �̄�

(
e𝐾𝜆 (𝑥) − 1

)
= 𝐾𝑁 (𝐾𝜆 (𝑥)),

(B.5)

where in the second equality we have used the fact that the 𝜆’s are i.i.d. It is straightforward to take
derivatives of equation (B.5) to obtain the cumulants; the first four are

𝜅1 = �̄� �̄� ≡ �̄�, 𝜅2 = �̄�(1+�̄�) ≡ Var[𝛬], 𝜅3 = �̄�(1+3�̄�+�̄�2), 𝜅4 = �̄�(1+7�̄�+6�̄�2+�̄�3),
(B.6)

where �̄� = �̄�δ𝑉 and �̄� = 𝑅𝜏s. Note that the expression for the variance here corresponds to equa-
tion (1.56), with the two terms representing temporal and spatial shot noise, respectively. We can simplify
things significantly by noting that the CBC rate per galaxy is typically on the order of𝑅 ∼ Myr−1, while
the source-frame observing time𝜏s is at most a few years, so we have �̄� ∼ 10−6. This means that, to a very
good approximation, we can take

𝜅1 ≃ 𝜅2 ≃ 𝜅3 ≃ 𝜅4 ≃ · · · ≃ �̄�, (B.7)

i.e.,𝛬 is approximately Poisson-distributed.

B.2 Fourth moment of the noisy spherical harmonic
components

In order to calculate the variance of our improved𝐶ℓ estimator (1.67) in the presence of shot noise, we
need to evaluate the fourth moment of the noisy SHCs, 𝛺 𝑖

ℓ𝑚
. We can do this by generalising our results

above to a set of distinct volume elements observed at different times δ𝑉𝑖 , whose total CBC counts𝛬𝑖 are
i.i.d.. To do so, we start with equation (B.3) and insert a Kronecker symbol 𝛿𝑖 𝑗 · · · into each term in the
sum, enforcing the statistical independence of each of the different volume elements,

⟨𝛬𝑖𝛬𝑗𝛬𝑘𝛬𝑙 ⟩𝑆 = 𝜅4
1 + 𝜅2𝜅

2
1
(
𝛿𝑖 𝑗 + 𝛿𝑖𝑘 + 𝛿𝑖𝑙 + 𝛿𝑗𝑘 + 𝛿𝑗 𝑙 + 𝛿𝑘𝑙

)
+ 𝜅2

2
(
𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗 𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

)
+ 𝜅3𝜅1

(
𝛿𝑖 𝑗𝑘 + 𝛿𝑖 𝑗 𝑙 + 𝛿𝑖𝑘𝑙 + 𝛿𝑗𝑘𝑙

)
+ 𝜅4𝛿𝑖 𝑗𝑘𝑙 .

(B.8)

Here 𝛿𝑖 𝑗𝑘 is a generalisation of the Kronecker delta 𝛿𝑖 𝑗 , which is equal to unity if 𝑖 = 𝑗 = 𝑘 and vanishes
otherwise (and similarly for 𝛿𝑖 𝑗𝑘𝑙 ). Note that we have re-introduced the notation for the shot noise average
⟨. . .⟩𝑆 from section 1.3.5, as it is important to distinguish between this and the cosmological average
⟨. . .⟩𝛺 when calculating the variance of the𝐶ℓ estimator under both ensembles.
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B.2 Fourth moment of the noisy spherical harmonic components

Rewriting in terms of the comoving CBC rate density, R(𝒓 , 𝜻 ) ≡ 𝑛𝑅 = limδ𝑉→0 𝛬/(𝜏sδ𝑉 ), and
introducing 𝜻 to represent the parameters of the CBC (masses, spins, . . . ) and of the galaxy (star formation
rate, metallicity, . . . ), we obtain

⟨R𝑖R 𝑗R𝑘R𝑙 ⟩𝑆 = R̄𝑖 R̄ 𝑗 R̄𝑘 R̄𝑙 +
[
R̄𝑖 R̄ 𝑗 R̄𝑘 (1 + �̄�𝑘 )

𝛿𝑘𝑙

𝜏𝑠 ,𝑘
+ 5 perms.

]
+

[
R̄𝑖 R̄𝑘 (1 + �̄�𝑖 ) (1 + �̄�𝑘 )

𝛿𝑖 𝑗

𝜏𝑠 ,𝑖

𝛿𝑘𝑙

𝜏𝑠 ,𝑘
+ 2 perms.

]
+

[
R̄𝑖 R̄ 𝑗 (1 + 3�̄�𝑗 + �̄�2

𝑗 )
𝛿𝑗𝑘𝑙

𝜏2
𝑠 ,𝑗

+ 3 perms.

]
+ R̄𝑖 (1 + 7�̄�𝑖 + 6�̄�2

𝑖 + �̄�
3
𝑖 )
𝛿𝑖 𝑗𝑘𝑙

𝜏3
𝑠 ,𝑖

,

(B.9)

where here the Kronecker symbols are shorthand for

𝛿𝑖 𝑗 → 𝛿𝑖 𝑗𝛿
3(𝒓 𝑖 − 𝒓 𝑗 )𝛿 (𝜻 𝑖 , 𝜻 𝑗 ), (B.10)

i.e., two GW sources must coincide in space, in time, and in parameter space, in order to contribute to the
shot noise.

Now, using equation (1.50) to write the SHCs in terms of the CBC rate density, we find〈
𝛺 𝑖
ℓ𝑚𝛺

𝑗∗
ℓ𝑚
𝛺 𝑖 ′∗
ℓ𝑚′𝛺

𝑗 ′

ℓ𝑚′

〉
𝑆

=

(
2𝐺
3

)4 ∫
d3𝒓 𝑖 d3𝒓 𝑗 d3𝒓 𝑖 ′ d3𝒓 𝑗 ′ 𝑌

𝑖∗
ℓ𝑚𝑌

𝑗

ℓ𝑚
𝑌 𝑖 ′
ℓ𝑚′𝑌

𝑗 ′∗
ℓ𝑚′ (1 + 𝑧𝑖 )−2(1 + 𝑧𝑗 )−2(1 + 𝑧𝑖 ′)−2(1 + 𝑧𝑗 ′)−2

×
(

𝑟 4
𝐻

𝑟𝑖𝑟𝑗𝑟𝑖 ′𝑟𝑗 ′

)2 ∫
d𝜻 𝑖 d𝜻 𝑗 d𝜻 𝑖 ′ d𝜻 𝑗 ′

d𝐸𝑖
d(ln 𝑓s,𝑖 )

d𝐸𝑗
d(ln 𝑓s,𝑗 )

d𝐸𝑖 ′
d(ln 𝑓s,𝑖 ′)

d𝐸𝑗 ′
d(ln 𝑓s,𝑗 ′)

〈
R𝑖R 𝑗R𝑖 ′R 𝑗 ′

〉
𝑆
,

(B.11)

where𝑌 𝑖
ℓ𝑚

is shorthand for𝑌ℓ𝑚 (𝒓 𝑖 ), etc. Using (B.9) and the properties of the spherical harmonics, we
get〈
𝛺 𝑖
ℓ𝑚𝛺

𝑗∗
ℓ𝑚
𝛺 𝑖 ′∗
ℓ𝑚′𝛺

𝑗 ′

ℓ𝑚′

〉
𝑆

= |𝛺ℓ𝑚 |2 |𝛺ℓ𝑚′ |2 +W𝜏 |𝛺ℓ𝑚 |2
[
𝛿𝑖 ′𝑗 ′ + 𝛿𝑚,−𝑚′ (𝛿𝑖 ′𝑗 + 𝛿𝑖 𝑗 ′)

]
+W𝜏 |𝛺ℓ𝑚′ |2

[
𝛿𝑖 𝑗 + 𝛿𝑚𝑚′ (𝛿𝑖 𝑖 ′ + 𝛿𝑗 𝑗 ′)

]
+W2

𝜏 (𝛿𝑖 𝑗𝛿𝑖 ′𝑗 ′ + 𝛿𝑚𝑚′𝛿𝑖 𝑖 ′𝛿𝑗 𝑗 ′ + 𝛿𝑚,−𝑚′𝛿𝑖 𝑗 ′𝛿𝑖 ′𝑗 ) + 𝑐 (3)
ℓ𝑚

X𝜏𝛺ℓ0𝛿𝑚′0(𝛿𝑖 𝑖 ′𝑗 + 𝛿𝑖 𝑗 𝑗 ′)

+ 𝑐 (3)
ℓ𝑚′X𝜏𝛺ℓ0𝛿𝑚0(𝛿𝑖 𝑖 ′𝑗 ′ + 𝛿𝑖 ′𝑗 𝑗 ′) + 𝑐 (4)

ℓ𝑚𝑚′Y𝜏𝛿𝑖 𝑖 ′𝑗 𝑗 ′,
(B.12)

where the shorthand (B.10) is now no longer used. The coefficients on the 3- and 4-point terms are

𝑐
(3)
ℓ𝑚

≡ (−)𝑚 (2ℓ + 1)3/2
√

4π

(
ℓ ℓ ℓ

0 0 0

) (
ℓ ℓ ℓ

0 𝑚 −𝑚

)
,

𝑐
(4)
ℓ𝑚𝑚′ ≡

2ℓ∑︁
ℓ′=0

(−)𝑚+𝑚′ (2ℓ ′ + 1) (2ℓ + 1)2

4π

(
ℓ ℓ ℓ ′

−𝑚 𝑚 0

) (
ℓ ℓ ℓ ′

𝑚 ′ −𝑚 ′ 0

) (
ℓ ℓ ℓ ′

0 0 0

)2

,

(B.13)
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B Compound Poisson shot noise model

and are just combinations of Wigner 3𝑗 symbols. In addition to the 2-point shot noise power W𝜏 we
defined before, we now have 3-point and 4-point terms that appear,

W𝜏 ≡
(

2𝐺
3

)2 𝑟 4
𝐻

𝜏

∫
d𝑟

(1 + 𝑧)3𝑟 2

∫
d𝜻 R̄

(
1 + �̄�

) [ d𝐸
d(ln 𝑓s)

]2
,

X𝜏 ≡
(

2𝐺
3

)3 𝑟 6
𝐻

𝜏2

∫
d𝑟

(1 + 𝑧)4𝑟 4

∫
d𝜻 R̄ (1 + 3�̄� + �̄�2)

[
d𝐸

d(ln 𝑓s)

]3
,

Y𝜏 ≡
(

2𝐺
3

)4 𝑟 8
𝐻

𝜏3

∫
d𝑟

(1 + 𝑧)5𝑟 6

∫
d𝜻 R̄ (1 + 7�̄� + 6�̄�2 + �̄�3)

[
d𝐸

d(ln 𝑓s)

]4
,

(B.14)

where �̄�(𝑟 , 𝜻 ) = R̄𝜏s/�̄� ≪ 1. (Note that the first line here is just a different way of writing equa-
tion (1.59).)

Taking the cosmological average of (B.12) and subtracting the 2nd moments, we therefore find

Cov
[
𝛺 𝑖
ℓ𝑚𝛺

𝑗∗
ℓ𝑚
, 𝛺 𝑖 ′

ℓ𝑚′𝛺
𝑗 ′∗
ℓ𝑚′

]
𝑆,𝛺

= 𝛿𝑚𝑚′ (𝐶ℓ + 𝛿𝑖 𝑖 ′W𝜏 )
(
𝐶ℓ + 𝛿𝑗 𝑗 ′W𝜏

)
+ 𝛿𝑚,−𝑚′

(
𝐶ℓ + 𝛿𝑖 𝑗 ′W𝜏

) (
𝐶ℓ + 𝛿𝑖 ′𝑗W𝜏

)
+ 𝑐 (4)

ℓ𝑚𝑚′Y𝜏𝛿𝑖 𝑖 ′𝑗 𝑗 ′.
(B.15)

Note that the term proportional to X𝜏 has vanished, due to the SHCs having zero mean for ℓ > 0
(recall that we do not attempt to estimate𝐶0, due to the degeneracy with the unknown mean intensity
�̄� ). The term proportional to Y𝜏 is associated with the fourth cumulant𝜅4, and is therefore a sign of
the non-Gaussian nature of the shot noise fluctuations (as 𝜅𝑛 = 0 for all 𝑛 > 2 in the Gaussian case).
However, this term does not end up contributing to the variance of our improved estimator𝐶ℓ , as this
includes only off-diagonal pairs 𝑖 ≠ 𝑗 and 𝑖 ′ ≠ 𝑗 ′ by design.
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C Higher-order memory from
cosmic strings

C.1 Understanding the origin of the higher-order
memory divergence

Here we derive a condition (C.5) on a generic GW signalℎ (𝑡 ) which, we argue heuristically, is necessary
for the associated nonlinear memory to diverge. We find this condition by considering a simple toy model
in which we can tune the ‘sharpness’ of the signal to find where the divergence sets in. We then show that
this condition predicts the divergence for cusps on ‘large’ cosmic string loops, while also providing an
explanation for why the memory from compact binaries never diverges.

Gaussian pulse as a toy model

Our goal here is to derive a condition on how ‘sharp’ a putative GW signal must be to give rise to a
divergent nonlinear memory expansion. To investigate this, we use a toy model in which the primary GW
is a Gaussian pulse which reaches our detector at retarded time 𝑡 = 0,

ℎ (0) (𝑡 ) = 𝐴

𝑟
exp

(
− 𝑡 2

2𝜎2

)
. (C.1)

This has amplitude 𝐴 and width 𝜎 , both of which have dimensions of length. We ignore the polarisation
and angular pattern of the pulse, though these can play an important role (e.g., for the case of kinks, as
discussed in section 2.4 above), and focus on the pulse’s behaviour as a function of time. The Fourier
transform of equation (C.1) is

ℎ̃ (0) ( 𝑓 ) = 𝐴

𝑟

√
2π𝜎 exp

(
− (2π𝑓 𝜎)2

2

)
, (C.2)

so we see that the pulse has a characteristic frequency of ∼ 1/𝜎 . The pulse is smooth and infinitely
differentiable for all finite 𝜎 ; however, by making 𝜎 small, we can make the pulse arbitrarily ‘sharp’
(equivalently, we can make the characteristic frequency arbitrarily large). This sharpness can be quantified
by the maximum value of the time derivative of the strain,

max
𝑡

|𝑟 ¤ℎ (0) (𝑡 ) | = e−1/2𝐴/𝜎 ∼ [amplitude] × [characteristic frequency], (C.3)
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C Higher-order memory from cosmic strings

i.e. if the dimensionless ratio 𝐴/𝜎 is much greater than unity the pulse is ‘sharp’, and if 𝐴/𝜎 is much less
than unity the pulse is ‘soft’.

The pulse’s first-order memory can be written as

𝑟 ¤ℎ (1) = 𝐶 |𝑟 ¤ℎ (0) |2 = 𝐶

(
𝐴𝑡

𝜎2

)2
exp

(
− 𝑡

2

𝜎2

)
, (C.4)

where𝐶 is some constant arising from the angular integral, which we assume to be O(1) for all orders
in the memory expansion. (This assumption can easily be violated: e.g., if the integrand has vanishing
TT component then𝐶 = 0.) We immediately see that the memory signal is larger than the primary GW
signal near the arrival time (|𝑡 | ∼ 𝜎 ) if and only if 𝐴/𝜎 ≫ 1, or equivalently,

max
𝑡

|𝑟 ¤ℎ (𝑡 ) | ≫ 1. (C.5)

Using equation (0.43), we see that this is equivalent to max𝑡 | ¤𝐸gw | ≫ 1/𝐺 = 𝑚Pl/𝑡Pl, i.e. the memory is
greater than the primary signal if the GW energy flux is trans-Planckian.

Moving on to the second-order memory, there are two contributions: the self-energy of the first-order
memory, and its cross-energy with the primary signal,

𝑟 ¤ℎ (2) = 𝐶𝑟 2( | ¤ℎ (1) + ¤ℎ (0) |2 − | ¤ℎ (0) |2) = 𝐶 |𝑟 ¤ℎ (1) |2 + 2𝐶𝑟 2 ¤ℎ (1) ¤ℎ (0)

= 𝐶 3
(
𝐴𝑡

𝜎2

)4
exp

(
−2𝑡 2

𝜎2

)
− 2𝐶 2

(
𝐴𝑡

𝜎2

)3
exp

(
− 3𝑡 2

2𝜎2

)
.

(C.6)

The general pattern is straightforward from here. Treating the ‘sharp’ regime 𝐴/𝜎 ≫ 1 and the ‘soft’
regime 𝐴/𝜎 ≪ 1 separately (analogous to the separation between the ‘large loop’ and ‘small loop’ regimes
for cusps), we find for all 𝑛 ≥ 1,

𝑟 ¤ℎ (𝑛) ≃


1
𝐶

[
𝐶𝐴𝑡

𝜎2 exp
(
− 𝑡 2

2𝜎2

)]2𝑛

, 𝐴/𝜎 ≫ 1

1
4𝐶

[
−2𝐶𝐴𝑡

𝜎2 exp
(
− 𝑡 2

2𝜎2

)]𝑛+1

, 𝐴/𝜎 ≪ 1

(C.7)

which shows that the memory expansion diverges if equation (C.5) holds.

Of course, there are many ways in which this argument could fail, some of which we have already
mentioned (in particular, if𝐶 ≪ 1). However, the general takeaway is that if the time derivative of a GW
strain signal is large, then a memory divergence might occur. For max𝑡 |𝑟 ¤ℎ | ≪ 1 on the other hand, it
seems very likely that the memory expansion must always converge. If this is indeed the case, then we
could interpret equation (C.5) as a necessary, but not sufficient, condition for the memory divergence.
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C.1 Understanding the origin of the higher-order memory divergence

Application to cosmic strings

How does this fit into our results for cosmic string cusps? Neglecting numerical constants, the time-
domain cusp waveform looks like

ℎ
(0)
c (𝑡 ) ∼ −𝐺𝜇

𝑟
ℓ2/3 |𝑡 |1/3 + constant, (C.8)

so the time derivative diverges at 𝑡 = 0 due to the absolute value function. If we introduce a cutoff at the
string width scale 𝛿 , we find that max𝑡 |𝑟 ¤ℎ (0)

c | ∼ 𝐺𝜇(ℓ/𝛿 )2/3. Naively applying the condition (C.5), we
would thus expect the cusp memory signal to diverge for loops of length ℓ ≳ 𝛿/(𝐺𝜇)3/2. However, this
does not happen, for the simple reason that there is a small factor𝐶 ≪ 1 arising from the angular integral,
and as mentioned above this causes the condition (C.5) to fail.

We can circumvent this issue by considering the first-order memory signal from the cusp as the source
of the divergence: this should give𝐶 = O(1) as it has a broad emission pattern, and is not concentrated
into a narrow beam. Indeed, using equation (2.66) we find that the maximum time derivative for the
first-order cusp memory signal is max𝑡 |𝑟 ¤ℎ (1)

c | ∼ (𝐺𝜇)2(ℓ/𝛿 )2/3. Applying the condition (C.5) again,
we find that the cusp memory signal should diverge if ℓ ≳ 𝛿/(𝐺𝜇)3, which is exactly what we find from
the careful analysis in section 2.3.8. This supports the idea that equation (C.5) gives a necessary condition
for the memory divergence, which is generally applicable if the factor𝐶 arising from the angular integral
is not too small.

Application to compact binaries

Here we use a very simple heuristic analysis to show that |𝑟 ¤ℎ (𝑡 ) | is at most O(1) for compact binary
coalescences, so that the memory divergence condition (C.5) never holds. We neglect numerical factors
throughout.

The GW signal from a CBC can be written asℎ (𝑡 ) = A(𝑡 )ei𝜙 (𝑡 ) , where the leading-order Newtonian
contributions to the amplitude and phase are [406]

A ∼ (𝐺M)5/4

𝑟𝜏 1/4 , 𝜙 ∼
( 𝜏

𝐺M

)5/8
, (C.9)

with𝜏 the time until coalescence and M ≡ 𝜂3/5𝑀 the chirp mass, where𝜂 ≤ 1/4 is the dimensionless
mass ratio. The time derivative of the strain is therefore

|𝑟 ¤ℎ (𝑡 ) | =
√︃
|𝑟 ¤A|2 + |𝑟 ¤𝜙A|2 ∼

√︄(
𝐺M
𝜏

)5/2
+

(
𝐺M
𝜏

)5/4
. (C.10)

Formally, this diverges in the Newtonian analysis as𝜏 → 0. However, introducing a cutoff at the ISCO
radius truncates the signal at 𝜏min ∼ 𝜂−8/5𝐺M, so that max𝑡 |𝑟 ¤ℎ (𝑡 ) | ∼

√︁
𝜂2 +𝜂4. Since𝜂 is at most

O(1), we see that the condition (C.5) is never met. This makes complete sense, given that we know that
the memory from CBC signals cannot diverge. As a by-product, this expression leads us to conjecture
that equal-mass binaries (𝜂 = 1/4) should give rise to stronger higher-order memory effects than extreme
mass-ratio inspirals (𝜂 ≪ 1).
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Figure C.1: Functions describing the strength of the 𝑛th-order cusp memory signal as a function of inclination,
with 𝐿𝑛 (𝐼 ) representing ‘large’ loops ℓ ≫ ℓ∗, and 𝑆𝑛 (𝐼 ) representing ‘small’ loops ℓ ≪ ℓ∗.

C.2 Angular integrals for higher-order cusp memory

Here we derive the angular patterns of the higher-order cusp memory in the ‘large-loop’ (ℓ ≫ ℓ∗) and
‘small-loop’ (ℓ ≪ ℓ∗) limits, which are described by the functions 𝐿𝑛 (𝐼 ) and 𝑆𝑛 (𝐼 ) respectively, with 𝐼

226



C.3 Angular integrals for kink memory

the inclination between the cusp beaming direction and the observer’s line of sight. These are defined by
inserting the 𝑛th-order memory formula (2.82) into the iterative relation (2.79), which gives

𝐿𝑛+1(𝐼 ) =
∫
𝒓 ′
|𝐿𝑛 (𝐼 ′) |2, 𝑆𝑛+1(𝐼 ) =

∫
𝒓 ′

6(1 + cos 𝐼 ′)𝑆𝑛 (𝐼 ′), (C.11)

for all 𝑛 ≥ 2, with 𝐿2(𝐼 ) = 𝑆2(𝐼 ) = 2 sin2 𝐼 . (The integral symbol
∫
𝒓 ′

is defined in equation (2.54).)

We find that 𝐿𝑛 and 𝑆𝑛 can be written as polynomials in cos 𝐼 (of order 2𝑛−1 and 𝑛, respectively). The
iterative process (C.11) can therefore be carried out by evaluating a simpler family of integrals,𝐶𝑛 (𝐼 ) ≡∫
𝒓 ′

cos𝑛 𝐼 ′. To do so, we choose our 𝒓 ′
= (𝜃 ′, 𝜙 ′) coordinates such that 𝜃 ′ is zero along the line of sight,

so that cos 𝜃 ′ ≡ 𝒓 ·𝒓 ′, with the cusp beaming direction defined relative to the line of sight by 𝒓 c ·𝒓 = cos 𝐼 .
We then have cos 𝐼 ′ ≡ 𝒓 c · 𝒓

′
= cos 𝜃 ′ cos 𝐼 − cos𝜙 ′ sin 𝜃 ′ sin 𝐼 , and equation (2.54) becomes∫

𝒓 ′
=

∫
𝑆2

d2𝒓 ′

4π
(1 + cos 𝜃 ′)e−2i𝜙′

, (C.12)

so that we can use a binomial expansion of cos𝑛 𝐼 ′ = (cos 𝜃 ′ cos 𝐼 − cos𝜙 ′ sin 𝜃 ′ sin 𝐼 )𝑛 to write

𝐶𝑛 (𝐼 ) =
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
(− sin 𝐼 )𝑘 cos𝑛−𝑘 𝐼

∫ +1

−1

d𝑥
2
(1+𝑥)𝑥𝑛−𝑘 (1−𝑥2)𝑘/2

∫ 2π

0

d𝜙 ′

2π
e−2i𝜙′

cos𝑘 𝜙 ′, (C.13)

where we have set 𝑥 = cos 𝜃 ′. Using the Beta function identity

B(𝑎, 𝑏) ≡
∫ 1

0
d𝑥 𝑥𝑎−1(1 − 𝑥)𝑏−1 =

𝛤 (𝑎)𝛤 (𝑏)
𝛤 (𝑎 + 𝑏) , (C.14)

we then obtain, for all 𝑛 ≥ 0,

𝐶2𝑛 (𝐼 ) =
𝑛∑︁
𝑘=0

√
π(𝑛 − 𝑘 ) (2𝑛)! cos2𝑘 𝐼 sin2(𝑛−𝑘 ) 𝐼

22𝑛+1𝑘 !(𝑛 − 𝑘 + 1)!𝛤 (𝑛 + 3
2 )

,

𝐶2𝑛+1(𝐼 ) =
𝑛∑︁
𝑘=0

√
π(𝑛 − 𝑘 ) (2𝑛 + 1)! cos2𝑘+1 𝐼 sin2(𝑛−𝑘 ) 𝐼

22𝑛+2𝑘 !(𝑛 − 𝑘 + 1)!𝛤 (𝑛 + 5
2 )

.

(C.15)

Calculating each iteration of equation (C.11) is then reduced to writing down the appropriate linear
combination of𝐶𝑛 (𝐼 ) for different 𝑛.

The resulting expressions for 𝑆𝑛 (𝐼 ) and 𝐿𝑛 (𝐼 ) for the first few 𝑛 ≥ 2 are shown in Tables C.1 and C.2
respectively. We find empirically that the large-loop angular functions can be approximated by |𝐿𝑛 (𝐼 ) | ≈
5(2/5)2𝑛−2 sin2 𝐼 with an accuracy of∼ 10%, as is illustrated in the top panel of figure C.1. The small-loop
angular functions 𝑆𝑛 (𝐼 ) do not seem to follow such a simple pattern.

C.3 Angular integrals for kink memory

Here we compute the integral 𝐾𝑛 (𝐼 ) defined in equation (2.94) for all angular modes 𝑛 ∈ Z. Note that
while the integrand is complex, the integral itself is always real, as the imaginary part of the integrand is
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C Higher-order memory from cosmic strings

𝑛 𝑆𝑛 (𝐼 )
2 2 sin2 𝐼

3 −2 sin2 𝐼

5
(5 + 3 cos 𝐼 )

4
2 sin2 𝐼

25
(25 + 24 cos 𝐼 + 3 cos 2𝐼 )

5 −2 sin2 𝐼

175
(154 + 201 cos 𝐼 + 42 cos 2𝐼 + 3 cos 3𝐼 )

6
sin2 𝐼

12250
(15575 + 28032 cos 𝐼 + 7932 cos 2𝐼 + 960 cos 3𝐼 + 45 cos 4𝐼 )

7 − sin2 𝐼

245000
[466422 cos 𝐼 + 172824 cos 2𝐼 + 5(29702 + 5619 cos 3𝐼 + 450 cos 4𝐼 + 15 cos 5𝐼 )]

8
sin2 𝐼

245000
(
− 30194 + 299024 cos 𝐼 + 157771 cos 2𝐼

+32552 cos 3𝐼 + 3490 cos 4𝐼 + 200 cos 5𝐼 + 5 cos 6𝐼
)

9 − sin2 𝐼

13475000
[
4934669 cos 𝐼 + 6432382 cos 2𝐼 + 5

(
− 2137388 + 347047 cos 3𝐼

+46508 cos 4𝐼 + 3565 cos 5𝐼 + 154 cos 6𝐼 + 3 cos 7𝐼
) ]

10
sin2 𝐼

10375750000
[
− 5257311104 cos 𝐼 + 2472686192 cos 2𝐼

+5
(
214599584 cos 3𝐼 + 36187180 cos 4𝐼

−7(383512899 − 491360 cos 5𝐼 − 28400 cos 6𝐼 − 960 cos 7𝐼 − 15 cos 8𝐼 )
) ]

11 − sin2 𝐼

1888386500000
[
− 2359095296230 cos 𝐼 − 55089058544 cos 2𝐼 + 116827655852 cos 3𝐼

+27832319320 cos 4𝐼 + 3261899900 cos 5𝐼
+49(−59685302066 + 4749680 cos 6𝐼 + 214995 cos 7𝐼 + 5850 cos 8𝐼 + 75 cos 9𝐼 )

]
12

sin2 𝐼

122745122500000
[
− 213800187213104 cos 𝐼 − 34153675430026 cos 2𝐼

+5
(
− 37491558286234 + 292405153376 cos 3𝐼

+238091184664 cos 4𝐼 + 37145938400 cos 5𝐼 + 3229010267 cos 6𝐼
+179962104 cos 7𝐼 + 6563970 cos 8𝐼 + 147000 cos 9𝐼 + 1575 cos 10𝐼

) ]
Table C.1: The first few small-loop angular functions, as defined by equation (C.11) with 𝑆2 (𝐼 ) = 2 sin2 𝐼 . Note

that 𝑆𝑛 (𝐼 ) is a polynomial in cos 𝐼 of order 𝑛.
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𝑛
𝐿
𝑛 (𝐼)

2
2

sin
2
𝐼

3
−

2
sin

2
𝐼

15
(5−

cos2
𝐼)

4
sin

2
𝐼

141750 [3737cos2
𝐼
−

262
cos4

𝐼
+

7(−2070
+

cos6
𝐼)]

5
sin

2
𝐼

123092512042500000 [91170878299511cos2
𝐼
−

8844505203863cos4
𝐼
+

627703754313cos6
𝐼
−

31676232034
cos8𝐼

+1106354755cos10
𝐼
+

1001(−326445712830
−

24241cos12
𝐼
+

245cos14
𝐼) ]

6
sin

2
𝐼

4375937836474054406594550954572130000000000000000 [2337436144549410554623113364688535605014856cos2
𝐼

−252383762462012251730735377642370477964415cos4
𝐼
+

22676810284676710047197528844734128748260
cos6

𝐼

−1739064548768558706903275538411759890046cos8𝐼
+

114707816611411474747133898122922244740
cos10

𝐼

−6538676998608577029462451915641765109cos12
𝐼
+

322110616165743776447552901776475040
cos14

𝐼

−13638911209793535304662793111510580
cos16

𝐼
+

490882191972236519729403447127344
cos18𝐼

+1463(−10081167364753857595829662265cos20
𝐼
+

246246861424248720285801892
cos22

𝐼

+1495(−3145080481324598891074
cos24

𝐼
+

44031911264492955804
cos26

𝐼

+6525(−569906751862925826959924173050076−
61436527080929cos28𝐼

+
271199768840

cos30
𝐼))) ]

Table C.2: The first few large-loop angular functions, as defined by equation (C.11) with 𝐿2 (𝐼 ) = 2 sin2 𝐼 . Note
that 𝐿𝑛 (𝐼 ) is a polynomial in cos 𝐼 of order 2𝑛−1, such that the number of terms grows exponentially with 𝑛.
Despite this apparent complexity, we find that these formulae can be approximated by the simple expression
|𝐿𝑛 (𝐼 ) | ≈ 5(2/5)2𝑛−2 sin2 𝐼 .
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Figure C.2: The angular integral𝐾𝑛 (𝐼 ) for non-negative𝑛, as given by equation (C.19). The corresponding curves
for negative 𝑛 are obtained by reflecting around 𝐼 = 0.

an odd function of 𝜙 . Note also that we can focus on non-negative 𝑛 ≥ 0 by exploiting the symmetry
property 𝐾−𝑛 (𝐼 ) = 𝐾𝑛 (−𝐼 ).

For some special values of 𝐼 we can obtain the full spectrum immediately from equation (2.94),

𝐾𝑛 (0) = −𝛿𝑛,0 −
1
2
(𝛿𝑛,1 + 𝛿𝑛,−1), 𝐾𝑛 (±π/2) = 𝛿𝑛,±2. (C.16)

For general values 𝐼 ∈ [−π/2,+π/2], we proceed by expanding the denominator of equation (2.94)
using the geometric series and the binomial theorem,

1
1 − cos 𝐼 cos𝜙

=

∞∑︁
𝑘=0

cos𝑘 𝐼 cos𝑘 𝜙 =

∞∑︁
𝑘=0

𝑘∑︁
𝑚=0

(
𝑘

𝑚

)
cos𝑘 𝐼

2𝑘
e−i(𝑘−2𝑚)𝜙 . (C.17)

This converges everywhere on 𝐼 ∈ [−π/2,+π/2] except for 𝐼 = 0, in which case we use equation (C.16)
instead. We can then integrate term-by-term to extract the contribution from each order in the series.
The result, valid for all 𝑛 ≥ 0, is

𝐾𝑛 (𝐼 ) =
∞∑︁

𝑘=max(0,2−𝑛)

(
2𝑘 + 𝑛 − 2

𝑘

) (
cos 𝐼

2

)2𝑘+𝑛−2 ( 1 + sin 𝐼
2

)2

− 2
∞∑︁
𝑘=0

(
2𝑘 + 𝑛
𝑘

) (
cos 𝐼

2

)2𝑘+𝑛+2
+

∞∑︁
𝑘=0

(
2𝑘 + 𝑛 + 2

𝑘

) (
cos 𝐼

2

)2𝑘+𝑛+2 ( 1 − sin 𝐼
2

)2
.

(C.18)
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C.3 Angular integrals for kink memory

The first sum must be carried out separately for the three cases 𝑛 = 0, 𝑛 = 1, and 𝑛 > 1, yielding the
following expressions:

𝐾0(𝐼 ) =
4 sin |𝐼 | + cos 2𝐼 − 3

2 cos2 𝐼
,

𝐾1(𝐼 ) =
sin |𝐼 | − 1
2 sin |𝐼 |

[
cos 𝐼 + (sin 𝐼 − 1) 1 − sin |𝐼 | + sin 𝐼 (1 + 2 sin 𝐼 + sin |𝐼 |)

cos3 𝐼

]
,

𝐾𝑛 (𝐼 ) =


4 sin 𝐼
cos2 𝐼

(
cos 𝐼

1 + sin 𝐼

)𝑛
, 𝐼 > 0

0, 𝐼 ≤ 0
, for 𝑛 > 1.

(C.19)

These clearly agree with equation (C.16) for 𝐼 = ±π/2. Note that for all 𝑛, the integral 𝐾𝑛 (𝐼 ) is not
differentiable at 𝐼 = 0; this is related to the fact that the series in equation (C.17) diverges at 𝐼 = 0.
However, despite this formal divergence, we see that equation (C.19) agrees with equation (C.16) in the
limit 𝐼 → 0, whether this limit is taken from above or from below. We therefore use equation (C.19) over
the full domain 𝐼 ∈ [−π/2,+π/2]. The resulting curves for the first few non-negative 𝑛 are illustrated in
figure C.2.

For 𝑛 ≥ 2, the integral only has support for 𝐼 > 0, and peaks at an inclination 𝐼∗ given by 𝐼∗ =

sin−1 [(𝑛/2) −
√︁
(𝑛/2)2 − 1]. When calculating the kink memory signal we are interested in the high-

frequency regime, which corresponds to large 𝑛. In the limit 𝑛 → ∞, we have 𝐼∗ ≃ 1/𝑛 and 𝐾𝑛 (𝐼∗) ≃
4/(e𝑛), meaning that the memory signal is strongly suppressed, and is only observable very close to (but
strictly outside of) the plane of the kink.
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D Derivation of the secular
Kramers-Moyal coefficients

D.1 Polarisation tensors in the binary’s coordinate
frame

In order to describe the GW polarisation tensors 𝑒𝐴
𝑖 𝑗

, we introduce the orthonormal frame (�̂� ,𝒗 , �̂�),
where �̂� is the GW propagation direction (see figure 3.2). We want to find the components of these basis
vectors in the frame of the binary, (𝒓 , 𝜽 , ℓ̂), as this determines the binary’s response to the GW. First, we
transform from the GW frame to the fixed reference frame (�̂� , �̂� , 𝒛 ) by applying the standard rotations
with respect to the zenith 𝜗 and azimuth 𝜙 ,

©«
𝑥

𝑦

𝑧

ª®®¬ = R𝜙 R𝜗
©«
𝑢

𝑣

𝑛

ª®®¬, R𝜗 =
©«

cos 𝜗 0 sin 𝜗
0 1 0

− sin 𝜗 0 cos 𝜗

ª®®¬, R𝜙 =
©«

cos𝜙 − sin𝜙 0
sin𝜙 cos𝜙 0

0 0 1

ª®®¬. (D.1)

This reference frame is transformed to the binary frame (𝒓 , 𝜽 , ℓ̂) with three further rotations, which
specify the inclination 𝐼 , the longitude of ascending node �, and the argument of the binary in the orbital
plane 𝜃 = 𝜓 + 𝜔 [432], ©«

𝑟

𝜃

ℓ

ª®®¬ = R𝜃 R𝐼 R�

©«
𝑥

𝑦

𝑧

ª®®¬, (D.2)

where

R� =
©«

cos � sin � 0
− sin � cos � 0

0 0 1

ª®®¬, R𝐼 =
©«

1 0 0
0 cos 𝐼 sin 𝐼
0 − sin 𝐼 cos 𝐼

ª®®¬, R𝜃 =
©«

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

ª®®¬. (D.3)

We thus obtain the desired relationship between the binary frame and the GW frame by applying all five
rotations, ©«

𝑟

𝜃

ℓ

ª®®¬ = R𝜃 R𝐼 R� R𝜙 R𝜗
©«
𝑢

𝑣

𝑛

ª®®¬. (D.4)
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D Derivation of the secular Kramers-Moyal coefficients

The various contractions with the polarisation tensors are then given by

𝑒+𝑖 𝑗𝑟
𝑖𝑟 𝑗 = [sin 𝜗 sin 𝐼 sin 𝜃 − cos 𝜗 (cos 𝜑 cos 𝜃 + sin 𝜑 cos 𝐼 sin 𝜃 )]2 − [cos 𝜑 cos 𝐼 sin 𝜃 − sin 𝜑 cos 𝜃 ]2,

𝑒×𝑖 𝑗𝑟
𝑖𝑟 𝑗 = 2(cos 𝜑 cos 𝐼 sin 𝜃 − sin 𝜑 cos 𝜃 ) [cos 𝜗 (cos 𝜑 cos 𝜃 + sin 𝜑 cos 𝐼 sin 𝜃 ) − sin 𝜗 sin 𝐼 sin 𝜃 ],

𝑒+𝑖 𝑗𝑟
𝑖 𝜃 𝑗 = (sin 𝜑 cos 𝜃 − cos 𝜑 cos 𝐼 sin 𝜃 ) (cos 𝜑 cos 𝐼 cos 𝜃 + sin 𝜑 sin 𝜃 )

− [cos 𝜗 cos 𝜑 sin 𝜃 + (sin 𝜗 sin 𝐼 − cos 𝜗 sin 𝜑 cos 𝐼 ) cos 𝜃 ]

× [cos 𝜗 (cos 𝜑 cos 𝜃 + sin 𝜑 cos 𝐼 sin 𝜃 ) − sin 𝜗 sin 𝐼 sin 𝜃 ],

𝑒×𝑖 𝑗𝑟
𝑖 𝜃 𝑗 = cos 𝜗 cos 2𝜑 cos 𝐼 cos 2𝜃 + sin 𝜗 sin 𝐼 (sin 𝜑 cos 2𝜃 − cos 𝜑 cos 𝐼 sin 2𝜃 )

+ 1
2

cos 𝜗 sin 2𝜑 (1 + cos2 𝐼 ) sin 2𝜃 ,

𝑒+𝑖 𝑗𝑟
𝑖 ℓ̂ 𝑗 = cos 𝜑 sin 𝐼 (cos 𝜑 cos 𝐼 sin 𝜃 − sin 𝜑 cos 𝜃 )

− (sin 𝜗 cos 𝐼 + cos 𝜗 sin 𝜑 sin 𝐼 ) [cos 𝜗 (cos 𝜑 cos 𝜃 + sin 𝜑 cos 𝐼 sin 𝜃 ) − sin 𝜗 sin 𝐼 sin 𝜃 ],

𝑒×𝑖 𝑗𝑟
𝑖 ℓ̂ 𝑗 = sin 𝜗 (sin 𝜑 cos 𝐼 cos 𝜃 − cos 𝜑 cos 2𝐼 sin 𝜃 ) − cos 𝜗 sin 𝐼 (cos 2𝜑 cos 𝜃 + sin 2𝜑 cos 𝐼 sin 𝜃 ),

(D.5)

where we define 𝜑 ≡ 𝜙 − �. We recall that 𝜗, 𝜙 are the spherical coordinates of the incoming plane
GW, � is the longitude of ascending node, and 𝜃 ≡ 𝜓 + 𝜔 is the orbital argument with respect to the
ascending node, with𝜓 the true anomaly and 𝜔 the argument of pericentre; these are all illustrated in
figure 3.2.

D.2 Transfer functions

The Fourier components of the transfer functions are defined in terms of the polarisation tensor contrac-
tions discussed in section D.1 by

𝑇 𝐴
𝑃 ,𝑛 =

3𝑃 2𝛾

4π

〈
𝑒 sin𝜓

1 + 𝑒 cos𝜓
𝑒𝐴𝑖 𝑗𝑟𝑖𝑟𝑗 + 𝑒

𝐴
𝑖 𝑗𝑟𝑖 𝜃 𝑗

〉
𝑛

, 𝑇 𝐴
𝑒,𝑛 =

𝛾 2

3𝑃𝑒
𝑇 𝐴
𝑃 ,𝑛 − 𝑃𝛾 5

4π𝑒

〈
𝑒𝐴
𝑖 𝑗
𝑟𝑖 𝜃 𝑗

(1 + 𝑒 cos𝜓 )2

〉
𝑛

,

𝑇 𝐴
𝐼 ,𝑛 =

𝑃𝛾 3

4π

〈
cos 𝜃

(1 + 𝑒 cos𝜓 )2𝑒
𝐴
𝑖 𝑗𝑟𝑖 ℓ̂𝑗

〉
𝑛

, 𝑇 𝐴
�,𝑛 =

𝑃𝛾 3

4π sin 𝐼

〈
sin 𝜃

(1 + 𝑒 cos𝜓 )2𝑒
𝐴
𝑖 𝑗𝑟𝑖 ℓ̂𝑗

〉
𝑛

,

𝑇 𝐴
𝜔,𝑛 =

𝑃𝛾 3

4π𝑒

〈
sin𝜓 (2 + 𝑒 cos𝜓 )
(1 + 𝑒 cos𝜓 )2 𝑒𝐴𝑖 𝑗𝑟𝑖 𝜃 𝑗 −

cos𝜓𝑒𝐴
𝑖 𝑗
𝑟𝑖𝑟𝑗

1 + 𝑒 cos𝜓

〉
𝑛

− cos 𝐼 𝑇 𝐴
�,𝑛 ,

𝑇 𝐴
𝜀,𝑛 = −𝑃𝛾

4

2π

〈
𝑒𝐴
𝑖 𝑗
𝑟𝑖𝑟𝑗

(1 + 𝑒 cos𝜓 )2

〉
𝑛

−𝛾 cos 𝐼 𝑇 𝐴
�,𝑛 −𝛾𝑇 𝐴

𝜔,𝑛 ,

(D.6)

where we have introduced the secular averaging operation

⟨· · ·⟩𝑛 ≡
∫ 𝑡0+𝑃

𝑡0

d𝑡
𝑃

exp
(

2πi𝑛𝑡
𝑃

)
(· · · ), (D.7)
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D.3 Transforming the reference frame

which extracts the 𝑛th-order Fourier coefficient of a given function of the true anomaly𝜓 (𝑡 ), holding
the orbital elements fixed (as they vary over much longer timescales). The subscript 𝑛 distinguishes this
from the ensemble average ⟨· · ·⟩, and from the secular average ⟨· · ·⟩sec (with the latter being equivalent to
⟨· · ·⟩𝑛 for 𝑛 = 0).

The Fourier components arising in the eccentric transfer functions can be expressed in terms of Hansen
coefficients,𝐶 𝑙𝑚

𝑛 ,𝑆 𝑙𝑚𝑛 [157]. These are functions of eccentricity that have been used for centuries in celestial
mechanics to describe Keplerian motion. We define them here by

𝐶 𝑙𝑚
𝑛 (𝑒 ) =

〈
cos𝑚𝜓

(1 + 𝑒 cos𝜓 )𝑙

〉
𝑛

, 𝑆 𝑙𝑚𝑛 (𝑒 ) =
〈

sin𝑚𝜓
(1 + 𝑒 cos𝜓 )𝑙

〉
𝑛

, (D.8)

with explicit expressions for particular sets of (𝑙 ,𝑚) given in section D.5.

Inserting equation (D.5) into equation (D.6) and using equation (D.8), we can thus write the transfer
functions as linear combinations of the Hansen coefficients. These are then the input to computing the
KM coefficients.

D.3 Transforming the reference frame

The polarisation tensor contractions in equation (D.5) are completely general and apply to any choice
of reference frame. However, the corresponding expressions for the transfer functions are very lengthy,
making it prohibitively difficult to calculate the KM coefficients. We circumvent this difficulty by choosing
a particular reference frame in which the transfer functions are much simpler, before transforming back
to a general reference frame.

Given two reference frames, (�̂� , �̂� , 𝒛 ) and (�̂� ′, �̂� ′, 𝒛 ′), we have two corresponding sets of orbital
elements for the binary, 𝑋 = (𝑃 , 𝑒 , 𝐼 ,�, 𝜔, 𝜀) and 𝑋 ′ = (𝑃 , 𝑒 , 𝐼 ′,�′, 𝜔 ′, 𝜀) (the period, eccentricity,
and compensated mean anomaly are the same in both frames, as they do not depend on the orientation
of the binary in space). The KM coefficients for the unprimed elements are given in terms of those for the
primed ones by (see, e.g., section 4.9 of Risken [484] for a derivation)

𝐷
(1)
𝑖

=
∂𝑋𝑖
∂𝑋𝑖 ′

𝐷
(1)
𝑖 ′ + ∂2𝑋𝑖

∂𝑋𝑖 ′∂𝑋 𝑗 ′
𝐷

(2)
𝑖 ′𝑗 ′ , 𝐷

(2)
𝑖 𝑗

=
∂𝑋𝑖
∂𝑋𝑖 ′

∂𝑋 𝑗

∂𝑋 𝑗 ′
𝐷

(2)
𝑖 ′𝑗 ′ , (D.9)

where primed indices run over the primed orbital elements. We therefore require the first and second
partial derivatives of the unprimed elements with respect to the primed ones. These can be deduced from
the following relations, which are derived from section 2.8 of Murray and Dermott [432],

cos 𝐼 = 𝑠𝐼 ′ sin 𝐼 ′ sin �′�̂� ′
· 𝒛 − 𝑠𝐼 ′ sin 𝐼 ′ cos �′�̂� ′

· 𝒛 + cos 𝐼 ′𝒛 ′
· 𝒛 ,

sin 𝐼 sin � = 𝑠𝐼 ′ sin 𝐼 ′ sin �′�̂� ′
· �̂� − 𝑠𝐼 ′ sin 𝐼 ′ cos �′�̂� ′

· �̂� + cos 𝐼 ′𝒛 ′
· �̂� ,

sin 𝐼 sin𝜔 = (cos �′ cos𝜔 ′ − cos 𝐼 ′ sin �′ sin𝜔 ′)�̂� ′
· 𝒛

+ (sin �′ cos𝜔 ′ + cos 𝐼 ′ cos �′ sin𝜔 ′)�̂� ′
· 𝒛 + sin 𝐼 ′ sin𝜔𝒛 ′

· 𝒛 ,

(D.10)
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D Derivation of the secular Kramers-Moyal coefficients

where

𝑠𝐼 ′ ≡

+1 if cos 𝐼 ′ > 0,

−1 if cos 𝐼 ′ < 0.
(D.11)

We are now free to specify the primed frame such that the KM coefficients are easier to compute. One
particularly simple choice is to choose (�̂� ′, �̂� ′, 𝒛 ′) such that 𝐼 ′ = π/4 and �′ = 𝜔 ′ = 0. (It may seem at
first that 𝐼 ′ = 0 is a simpler choice, as the reference frame then coincides with the binary’s frame. However,
there is a coordinate singularity associated with 𝐼 ′ = 0 which makes some of the associated coefficients
poorly-behaved. Taking 𝐼 ′ = π/4 is much easier, particularly since we then have sin 𝐼 ′ = cos 𝐼 ′, which
simplifies many of the resulting expressions.)

Having specified the primed frame, we require the first and second derivatives to transform back to
the unprimed frame, which is relevant for a general observer. Using equation (D.10), we find that the
nonzero derivatives, evaluated at (𝐼 ′,�′, 𝜔 ′) = ( π4 , 0, 0), are given by

∂𝐼

∂𝐼 ′
= cos𝜔,

∂𝐼

∂�′ = − sin𝜔
√

2
,

∂�

∂𝐼 ′
=

sin𝜔
sin 𝐼

,
∂�

∂�′ =
cos𝜔

√
2 sin 𝐼

,
∂𝜔

∂𝐼 ′
= − sin𝜔

tan 𝐼
,

∂𝜔

∂�′ =
1
√

2

(
1 − cos𝜔

tan 𝐼

)
,

∂𝜔

∂𝜔 ′ = 1,
∂2𝐼

∂𝐼 ′2 =
sin2 𝜔

tan 𝐼
,

∂2𝐼

∂𝐼 ′∂�′ =
sin𝜔
√

2

( cos𝜔
tan 𝐼

− 1
)
,

∂2𝐼

∂�′2 =
cos𝜔

2

( cos𝜔
tan 𝐼

− 1
)
,

∂2�

∂𝐼 ′2 = − sin 2𝜔
sin 𝐼 tan 𝐼

,
∂2�

∂𝐼 ′∂�′ =
cos𝜔 − cos 2𝜔 cot 𝐼

√
2 sin 𝐼

,

∂2�

∂�′2 =
sin𝜔
sin 𝐼

(
cos𝜔
tan 𝐼

− 1
2

)
,

∂2𝜔

∂𝐼 ′2 = sin 2𝜔
2 − sin2 𝐼

2 sin2 𝐼
,

∂2𝜔

∂𝐼 ′∂�′ =
1

2
√

2

(
cos 2𝜔

2 − sin2 𝐼

sin2 𝐼
− 2 cos𝜔

tan 𝐼
− 1

)
,

∂2𝜔

∂�′2 =
sin𝜔
tan 𝐼

(
1
2
− cos𝜔

2 − sin2 𝐼

sin 2𝐼

)
.

(D.12)

It is straightforward to confirm that these are well-behaved and take on the appropriate values when
(𝐼 ,�, 𝜔) → (𝐼 ′,�′, 𝜔 ′).

We thus find that the unprimed drift coefficients are given in terms of those in the primed frame by

𝐷
(1)
𝐼

= cos𝜔

[
𝐷

(1)
𝐼 ′ +

( cos𝜔
tan 𝐼

− 1
)𝐷 (2)

�′�′

2

]
+ sin2 𝜔

tan 𝐼
𝐷

(2)
𝐼 ′𝐼 ′,

𝐷
(1)
� =

1
sin 𝐼

[
sin𝜔𝐷 (1)

𝐼 ′ − sin 2𝜔
tan 𝐼

𝐷
(2)
𝐼 ′𝐼 ′ + sin𝜔

(
cos𝜔
tan 𝐼

− 1
2

)
𝐷

(2)
�′�′

]
,

𝐷
(1)
𝜔 =

sin𝜔
sin 𝐼

[
− cos 𝐼𝐷 (1)

𝐼 ′ + cos𝜔
2 − sin2 𝐼

sin 𝐼
𝐷

(2)
𝐼 ′𝐼 ′ +

(
cos 𝐼 − cos𝜔

2 − sin2 𝐼

sin 𝐼

)
𝐷

(2)
�′�′

2

]
,

(D.13)
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D.4 Kramers-Moyal coefficients in the primed frame

with the diffusion coefficients given by

𝐷
(2)
𝐼 𝐼

= cos2 𝜔𝐷
(2)
𝐼 ′𝐼 ′ +

sin2 𝜔

2
𝐷

(2)
�′�′, 𝐷

(2)
𝐼� =

sin 2𝜔
2 sin 𝐼

(
𝐷

(2)
𝐼 ′𝐼 ′ −

1
2
𝐷

(2)
�′�′

)
,

𝐷
(2)
𝐼 𝜔

= sin𝜔
[
−cos𝜔

tan 𝐼
𝐷

(2)
𝐼 ′𝐼 ′ +

1
2

( cos𝜔
tan 𝐼

− 1
)
𝐷

(2)
�′�′ −

1
√

2
𝐷

(2)
�′𝜔′

]
,

𝐷
(2)
�� =

1
sin2 𝐼

(
sin2 𝜔𝐷

(2)
𝐼 ′𝐼 ′ +

cos2 𝜔

2
𝐷

(2)
�′�′

)
,

𝐷
(2)
�𝜔 =

1
sin 𝐼

[
− sin2 𝜔

tan 𝐼
𝐷

(2)
𝐼 ′𝐼 ′ +

cos𝜔
2

(
1 − cos𝜔

tan 𝐼

)
𝐷

(2)
�′�′ +

cos𝜔
√

2
𝐷

(2)
�′𝜔′

]
,

𝐷
(2)
𝜔𝜔 =

sin2 𝜔

tan2 𝐼
𝐷

(2)
𝐼 ′𝐼 ′ +

1
2

(
1 − cos𝜔

tan 𝐼

)2
𝐷

(2)
�′�′ +

√
2
(
1 − cos𝜔

tan 𝐼

)
𝐷

(2)
�′𝜔′ +𝐷 (2)

𝜔′𝜔′,

𝐷
(2)
𝜔𝜀 = 𝐷

(2)
𝜔′𝜀 , 𝐷

(2)
𝑋 𝐼

= 𝐷
(2)
𝑋� = 𝐷

(2)
𝑋𝜔

= 𝐷
(2)
𝑋 𝜀

= 𝐷
(2)
𝐼 𝜀

= 𝐷
(2)
�𝜀 = 0,

(D.14)

where 𝑋 here stands for 𝑃 or 𝑒 .

D.4 Kramers-Moyal coefficients in the primed frame

Here we give the KM coefficients evaluated in the primed coordinate frame (𝐼 ′,�′, 𝜔 ′) = ( π4 , 0, 0).
To calculate these, we first evaluate the polarisation tensor contractions from section D.1 in the primed
frame, and insert these into equation (D.6) to find the appropriate GW transfer functions, expressing
the secular averages in terms of Hansen coefficients that are listed below in section D.5. These secular
transfer functions are then inserted into equation (3.51), integrating over the GW propagation direction
�̂� = (𝜗, 𝜙) to obtain the KM coefficients. The resulting expressions for the drift vector are

𝐷
(1)
𝑃

=𝑉𝑃 + 9𝑃 2𝛾 2

80

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[
2𝐸 02

𝑛

(
10𝑒𝐸 02

𝑛 + (3 + 7𝑒2)𝐸 11
𝑛 + (1 − 11𝑒2)𝐸 13

𝑛 − 2𝑒𝛾 2𝐸 22
𝑛

)∗
+ 𝐸 11

𝑛

(
𝑒 (3 + 2𝑒2)𝐸 11

𝑛 − 2𝑒 (1 + 4𝑒2)𝐸 13
𝑛 − 2𝛾 2𝐸 22

𝑛

)∗
− 𝑒 (1 − 6𝑒2)

��𝐸 13
𝑛

��2
+ 8𝛾 2

(
𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 )

) (
𝐸 21
𝑛 − 𝐸 23

𝑛 + 𝑒
4
(𝐸 20

𝑛 + 6𝐸 22
𝑛 − 𝐸 24

𝑛 )
)∗

+ 4𝛾 2
(
𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 ) −𝛾 2𝐸 22

𝑛

) (
𝐸 02
𝑛

′ + 𝑒
2
(𝐸 11

𝑛 − 𝐸 13
𝑛 ) ′

)∗
+ 2𝛾 2𝐸 13

𝑛

(
𝐸 22
𝑛

)∗
− 4𝑒

3
𝑆 11
𝑛

(
(1 + 4𝑒2)𝑆 11

𝑛 + 𝑒𝛾 2𝑆 11
𝑛
′)]
,

𝐷
(1)
𝑒 =𝑉𝑒 +

3𝑃𝛾 6

20𝑒2

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[
1
𝑒

���𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 )

���2 + 𝛾 4

𝑒
(𝑆22
𝑛 )2 − 𝑒2

3
𝑆 11
𝑛
′
𝑆 11
𝑛

+
(
𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 ) −𝛾 2𝐸 22

𝑛

) (
− 2
𝑒
𝐸 02
𝑛 + 1

2
(𝐸 11

𝑛 + 3𝐸 13
𝑛 ) + 2(𝐸 21

𝑛 − 𝐸 23
𝑛 ) + 𝐸 02

𝑛
′

−𝛾 2𝐸 22
𝑛

′ + 𝑒
2
(𝐸 20

𝑛 + 12𝐸 22
𝑛 − 𝐸 24

𝑛 + (𝐸 11
𝑛 − 𝐸 13

𝑛 ) ′)
)∗]

,

𝐷
(1)
𝐼 ′ =

1
2
𝐷

(2)
�′�′, 𝐷

(1)
�′ = 0, 𝐷

(1)
𝜔′ =𝑉𝜔′, 𝐷

(1)
𝜀 =𝑉𝜀 ,

(D.15)
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D Derivation of the secular Kramers-Moyal coefficients

while the nonzero components of the diffusion matrix are

𝐷
(2)
𝑃𝑃

=
27𝑃 3𝛾 2

20

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 )

���2 − (𝑒𝑆 11
𝑛 )2

3

]
,

𝐷
(2)
𝑃𝑒

=
𝛾 2𝐷

(2)
𝑃𝑃

3𝑃𝑒
− 9𝑃 2𝛾 6

40

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛𝐸

22
𝑛

(
2
𝑒
𝐸 02
𝑛 + 𝐸 11

𝑛 − 𝐸 13
𝑛

)∗
,

𝐷
(2)
𝑒𝑒 =

3𝑃𝛾 6

20𝑒2

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 02
𝑛 + 𝑒

2
(𝐸 11

𝑛 − 𝐸 13
𝑛 ) −𝛾 2𝐸 22

𝑛

���2 − (𝑒𝑆 11
𝑛 )2

3

]
,

𝐷
(2)
𝐼 ′𝐼 ′ =

3𝑃𝛾 6

80

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

��𝐸 20
𝑛 + 𝐸 22

𝑛

��2, 𝐷
(2)
�′�′ = −

√
2𝐷 (2)

�′𝜔′ =
3𝑃𝛾 6

40

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

��𝐸 20
𝑛 − 𝐸 22

𝑛

��2,
𝐷

(2)
𝜔′𝜔′ =

1
2
𝐷

(2)
�′�′ +

3𝑃𝛾 6

80𝑒2

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 11
𝑛 + 𝐸 13

𝑛 + 2𝐸 21
𝑛 − 2𝐸 23

𝑛 + 𝑒
2

(
𝐸 20
𝑛 − 𝐸 24

𝑛

)���2 + 4
3

(
𝐶 11
𝑛

)2
]
,

𝐷
(2)
𝜔′𝜀 = −3𝑃𝛾 7

80𝑒2

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 11
𝑛 + 𝐸 13

𝑛 + 2(𝐸 21
𝑛 − 𝐸 23

𝑛 ) + 𝑒
2
(𝐸 20

𝑛 − 4𝐸 22
𝑛 − 𝐸 24

𝑛 )
���2

+ 4
3
𝐶 11
𝑛 (𝐶 11

𝑛 − 2𝑒𝐶 20
𝑛 ) − 4𝑒2 |𝐸 22

𝑛 |2
]
,

𝐷
(2)
𝜀𝜀 =

3𝑃𝛾 8

80𝑒2

∞∑︁
𝑛=1

𝑛𝐻 2
0 𝛺𝑛

[���𝐸 11
𝑛 + 𝐸 13

𝑛 + 2(𝐸 21
𝑛 − 𝐸 23

𝑛 ) + 𝑒
2
(𝐸 20

𝑛 − 8𝐸 22
𝑛 − 𝐸 24

𝑛 )
���2 + 4

3
(𝐶 11

𝑛 − 2𝑒𝐶 20
𝑛 )2

]
.

(D.16)

These KM coefficients can be transformed back to a general reference frame using equations (D.13)
and (D.14), resulting in the expressions given in section 3.3.

D.5 Hansen coefficients

Using various formulae given in Brumberg [157], we write the Hansen coefficients as

𝐶 𝑙𝑚
𝑛 (𝑒 ) = 2𝐹1(−𝑚 − 𝑙 − 1,𝑚 − 𝑙 − 1; 1; 𝛽2)

2𝛾 2𝑙 (1 + 𝛽2)𝑙+1 [𝐽𝑛−𝑚 (𝑛𝑒 ) + 𝐽𝑛+𝑚 (𝑛𝑒 )]

+
∞∑︁
𝑘=1

{
(𝑚 − 𝑙 − 1)𝑘 𝛽𝑘

2𝑘 !𝛾 2𝑙 (1 + 𝛽2)𝑙+1 2𝐹1(−𝑚 − 𝑙 − 1, 𝑘 +𝑚 − 𝑙 − 1;𝑘 + 1; 𝛽2) [𝐽𝑛−𝑚−𝑘 (𝑛𝑒 ) + 𝐽𝑛+𝑚+𝑘 (𝑛𝑒 )]

+ (−𝑚 − 𝑙 − 1)𝑘 𝛽𝑘

2𝑘 !𝛾 2𝑙 (1 + 𝛽2)𝑙+1 2𝐹1(𝑘 − 𝑙 −𝑚 − 1,−𝑙 +𝑚 − 1;𝑘 + 1; 𝛽2) [𝐽𝑛−𝑚+𝑘 (𝑛𝑒 ) + 𝐽𝑛+𝑚−𝑘 (𝑛𝑒 )]
}
,

𝑆 𝑙𝑚𝑛 (𝑒 ) = i 2𝐹1(−𝑚 − 𝑙 − 1,𝑚 − 𝑙 − 1; 1; 𝛽2)
2𝛾 2𝑙 (1 + 𝛽2)𝑙+1 [𝐽𝑛−𝑚 (𝑛𝑒 ) − 𝐽𝑛+𝑚 (𝑛𝑒 )]

+
∞∑︁
𝑘=1

{
i(𝑚 − 𝑙 − 1)𝑘 𝛽𝑘

2𝑘 !𝛾 2𝑙 (1 + 𝛽2)𝑙+1 2𝐹1(−𝑚 − 𝑙 − 1, 𝑘 +𝑚 − 𝑙 − 1;𝑘 + 1; 𝛽2) [𝐽𝑛−𝑚−𝑘 (𝑛𝑒 ) − 𝐽𝑛+𝑚+𝑘 (𝑛𝑒 )]

+ i(−𝑚 − 𝑙 − 1)𝑘 𝛽𝑘

2𝑘 !𝛾 2𝑙 (1 + 𝛽2)𝑙+1 2𝐹1(𝑘 −𝑚 − 𝑙 − 1,𝑚 − 𝑙 − 1;𝑘 + 1; 𝛽2) [𝐽𝑛−𝑚+𝑘 (𝑛𝑒 ) − 𝐽𝑛+𝑚−𝑘 (𝑛𝑒 )]
}
,

(D.17)
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D.5 Hansen coefficients

where we define the expansion variable 𝛽 ≡ 𝑒/(1 + 𝛾 ), and where (· · · )𝑘 is a rising Pochhammer
symbol, defined by (𝑛)𝑘 ≡ 𝑛 (𝑛 + 1) (𝑛 + 2) · · · (𝑛 + 𝑘 − 1), while 2𝐹1(𝑎, 𝑏 ; 𝑐 ; 𝑧) is a hypergeometric
function, and 𝐽𝑛 (𝑧) is a Bessel function of the first kind. We see that in the circular case 𝑒 = 0 we have
𝛽 = 0, 2𝐹1(𝑎, 𝑏 ; 𝑐 ; 0) = 1, and 𝐽𝑛 (0) = 𝛿𝑛,0, and these expressions in equation (D.17) simplify to
𝐶 𝑙𝑚
𝑛 = 1

2 (𝛿𝑛,𝑚 + 𝛿𝑛,−𝑚) and 𝑆 𝑙𝑚𝑛 = i
2 (𝛿𝑛,𝑚 − 𝛿𝑛,−𝑚), which can be confirmed by directly integrating

equation (D.8). Note also that for general eccentricity 𝑒 ∈ (0, 1), from the definition of the Pochhammer
symbol, the sums over𝑘 in equation (D.17) terminate if and only if𝑚 ≤ 𝑙+1, otherwise the corresponding
Hansen coefficients will have an infinite number of terms.

Using equation (D.17), we can directly compute all the Hansen coefficients that appear in equa-
tions (3.55) and (3.54), obtaining the cosine coefficients
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(D.18)
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and the sine coefficients,
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(D.19)

Note that all the Bessel functions appearing in equations (D.18) and (D.19) have their argument equal to
𝑛𝑒 , even if they are not of order 𝑛; we suppress this argument for brevity.
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Acronyms

AGWB Astrophysical gravitational-wave background
AION Atom Interferometer Observatory and Network
BAO Baryon acoustic oscillations
BBH Binary black hole
BBN Big-bang nucleosynthesis
BH Black hole
BHNS Black hole-neutron star
BNS Binary neutron star
CBC Compact binary coalescence
CDM Cold dark matter
CE Cosmic Explorer
CGF Cumulant-generating function
CP Common process
DM Dark matter
EFE Einstein field equation
EM Electromagnetic
EMRI Extreme mass-ratio inspiral
EoM Equation of motion
EPTA European Pulsar Timing Array
ET Einstein Telescope
FLRW Friedmann-Lemaître-Robertson-Walker
FOPT First-order phase transition
FPE Fokker-Planck equation
GR General relativity
GUT Grand unified theory
GW Gravitational wave
GWB Gravitational-wave background
GWTC Gravitational-wave transient catalogue
i.i.d. Independent and identically distributed
IFO Interferometer
IPTA International Pulsar Timing Array
ISCO Innermost stable circular orbit
ISW Integrated Sachs-Wolfe

241



Acronyms

KAGRA Kamioka Gravitational-Wave Detector
KM Kramers-Moyal
LHC Large Hadron Collider
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
LLR Lunar laser ranging
LR Laser ranging
LSS Large-scale structure
LVK LIGO/Virgo/KAGRA
MAGIS Matter-wave Atomic Gradiometer Interferometric Sensor
MHD Magnetohydrodynamic
MSP Millisecond pulsar
MVUE Minimum-variance unbiased estimator
NANOGrav North American Nanohertz Observatory for Gravitational Waves
NS Neutron star
ODE Ordinary differential equation
ORF Overlap reduction function
PBH Primordial black hole
PDE Partial differential equation
PDF Probability density function
PI Power-law integrated
PN Post-Newtonian
PPTA Parkes Pulsar Timing Array
PSD Power spectral density
PTA Pulsar timing array
QNM Quasinormal mode
rms Root-mean-square
SFR Star formation rate
SGWB Stochastic gravitational-wave background
SHC Spherical harmonic component
SKA Square Kilometre Array
SLR Satellite laser ranging
SNR Signal-to-noise ratio
SW Sachs-Wolfe
ToA Time of arrival
TT Transverse-traceless
VEV Vacuum expectation value
WD White dwarf
ZFL Zero-frequency limit
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